首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract

In recent papers [1–3] we reported molecular dynamics simulation studies of ions and water molecules adsorbed in a rigid zeolite-A framework using a simple Lennard-Jones potential plus Coulomb potential with Ewald summation to investigate the structure and dynamics of the adsorbates. In the present paper the same technique is applied to study the local structure and dynamics of NH4 + ions in a rigid dehydrated zeolite-A. During the preliminary equilibration, the unstable NH4(4) type ion (the 12th ion) is pushed down to near a more stable 6-ring position in the α-cage that is already associated with an NH4(1) type ion (the 1st) in the β-cage, which moves to another 6-ring position in the β-cage that is already associated with an NH4(2) type ion (the 7th) in the α-cage. Calculated x, y, and z coordinates of some NH4 + ions are in good agreement with those obtained from an X-ray diffraction experiment except that no NH4(4) type ion is found and there are six NH4(2) type ions instead of 0.5 and 5.5 occupancy. The analyses of calculated interatomic distances and time correlation functions of these ions indicate that the NH4(1 – 1) and NH4(3) type ions are associated loosely with only one O (3) atom of the 6-ring and with only one O (1) atom of the 8-ring windows, respectively, while the NH4(1–2) and NH4(2) type ions are associated strongly with two or three O (3) atoms of the 6-ring windows in the α- and β-cages, respectively. The analysis of hydrogen bond time correlation functions of these ions indicate that about one, two or three, three, and one hydrogen bond of each NH4(1–1), NH4(1–2), NH4(2) and NH4(3) type ion is kept for 1.4, 21, 75, and 1.4 ps, respectively, before breakup of the hydrogen bond occurs and significant exchange of O atom hydrogen-bonded to the ion.  相似文献   

2.
The transport cycle in the glutamate transporter (GlT) is catalyzed by the cotransport of three Na+ ions. However, the positions of only two of these ions (Na1 and Na2 sites) along with the substrate have been captured in the crystal structures reported for both the outward-facing and the inward-facing states of Gltph. Characterizing the third ion binding site (Na3) is necessary for structure-function studies attempting to investigate the mechanism of transport in GlTs at an atomic level, particularly for the determination of the sequence of the binding events during the transport cycle. In this study, we report a series of molecular dynamics simulations performed on various bound states of Gltph (the apo state, as well as in the presence of Na+, the substrate, or both), which have been used to identify a putative Na3 site. The calculated trajectories have been used to determine the water accessibility of potential ion-binding residues in the protein, as a prerequisite for their ion binding. Combined with conformational analysis of the key regions in the protein in different bound states and several additional independent simulations in which a Na+ ion was randomly introduced to the interior of the transporter, we have been able to characterize a putative Na3 site and propose a plausible binding sequence for the substrate and the three Na+ ions to the transporter during the extracellular half of the transport cycle. The proposed Na3 site is formed by a set of highly conserved residues, namely, Asp312, Thr92, and Asn310, along with a water molecule. Simulation of a fully bound state, including the substrate and the three Na+ ions, reveals a stable structure—showing closer agreement to the crystal structure when compared to previous models lacking an ion in the putative Na3 site. The proposed sequence of binding events is in agreement with recent experimental models suggesting that two Na+ ions bind before the substrate, and one after that. Our results, however, provide additional information about the sites involved in these binding events.  相似文献   

3.
Abstract

Nanosecond scale molecular dynamics simulations have been performed on antiparallel Greek key type d(G7) quadruplex structures with different coordinated ions, namely Na+ and K+ ion, water and Na+ counter ions, using the AMBER force field and Particle Mesh Ewald technique for electrostatic interactions. Antiparallel structures are stable during the simulation, with root mean square deviation values of ~ 1.5 Å from the initial structures. Hydrogen bonding patterns within the G-tetrads depend on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate different cations. However, alternating syn-anti arrangement of bases along a chain as well as in a quartet is maintained through out the MD simulation. Coordinated Na+ ions, within the quadruplex cavity are quite mobile within the central channel and can even enter or exit from the quadruplex core, whereas coordinated K+ ions are quite immobile. MD studies at 400K indicate that K+ ion cannot come out from the quadruplex core without breaking the terminal G-tetrads. Smaller grooves in antiparallel structures are better binding sites for hydrated counter ions, while a string of hydrogen bonded water molecules are observed within both the small and large grooves. The hydration free energy for the K+ ion coordinated structure is more favourable than that for the Na+ ion coordinated antiparallel quadruplex structure.  相似文献   

4.
Rhombohedral NaZr2(PO4)3 is the prototype of all the NASICON‐type materials. The ionic diffusion in these rhombohedral NASICON materials is highly influenced by the ionic migration channels and the bottlenecks in the channels which have been extensively studied. However, no consensus is reached as to which one is the preferential ionic migration channel. Moreover, the relationships between the Na+ distribution over the multiple available sites, concerted migration, and diffusion properties remain elusive. Using ab initio molecular dynamics simulations, here it is shown that the Na+ ions tend to migrate through the Na1–Na3–Na2–Na3–Na1 channels rather than through the Na2–Na3–Na3–Na2 channels. There are two types of concerted migration mechanisms: two Na+ ions located at the adjacent Na1 and Na2 sites can migrate either in the same direction or at an angle. Both mechanisms exhibit relatively low migration barriers owing to the potential energy conversion during the Na+ ions migration process. Redistribution of Na+ ions from the most stable Na1 sites to Na2 on increasing Na+ total content further facilitates the concerted migration and promotes the Na+ ion mobility. The work establishes a connection between the Na+ concentration in rhombohedral NASICON materials and their diffusion properties.  相似文献   

5.
Graphite is the most widely used anode material for Li‐ion batteries and is also considered a promising anode for K‐ion batteries. However, Na+, a similar alkali ion to Li+ or K+, is incapable of being intercalated into graphite and thus, graphite is not considered a potential electrode for Na‐ion batteries. This atypical behavior of Na has drawn considerable attention; however, a clear explanation of its origin has not yet been provided. Herein, through a systematic investigation of alkali metal graphite intercalation compounds (AM‐GICs, AM = Li, Na, K, Rb, Cs) in various solvent environments, it is demonstrated that the unfavorable local Na‐graphene interaction primarily leads to the instability of Na‐GIC formation but can be effectively modulated by screening Na ions with solvent molecules. Moreover, it is shown that the reversible Na intercalation into graphite is possible only for specific conditions of electrolytes with respect to the Na‐solvent solvation energy and the lowest unoccupied molecular orbital level of the complexes. It is believed that these conditions are applicable to other electrochemical systems involving guest ions and an intercalation host and hint at a general strategy to tailor the electrochemical intercalation between pure guest ion intercalation and cointercalation.  相似文献   

6.
MATE (multidrug and toxic compound extrusion) transporter proteins mediate metabolite transport in plants and multidrug resistance in bacteria and mammals. MATE transporter NorM from Vibrio cholerae is an antiporter that is driven by Na+ gradient to extrude the substrates. To understand the molecular mechanism of Na+‐substrate exchange, molecular dynamics simulation was performed to study conformational changes of both wild‐type and mutant NorM with and without cation bindings. Our results show that NorM is able to bind two Na+ ions simultaneously, one to each of the carboxylic groups of E255 and D371 in the binding pocket. Furthermore, this di‐Na+ binding state is likely more efficient for conformational changes of NorM_VC toward the inward‐facing conformation than single‐Na+ binding state. The observation of two Na+ binding sites of NorM_VC is consistent with the previous study that two sites for ion binding (denoted as Na1/Na2 sites) are found in the transporter LeuT and BetP, another two secondary transporters. Taken together, our findings shed light on the structure rearrangements of NorM on Na+ binding and enrich our knowledge of the transport mechanism of secondary transporters. Proteins 2014; 82:240–249. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Gastric H,K-ATPase is an electroneutral transmembrane pump that moves protons from the cytoplasm of the parietal cell into the gastric lumen in exchange for potassium ions. The mechanism of transport against the established electrochemical gradients includes intermediate conformations in which the transferred ions are trapped (occluded) within the membrane domain of the pump. The pump cycle involves switching between the E1 and E2P states. Molecular dynamics simulations on homology models of the E2P and E1 states were performed to investigate the mechanism of K+ movement in this enzyme. We performed separate E2P simulations with one K+ in the luminal channel, one K+ ion in the occlusion site, two K+ ions in the occlusion site, and targeted molecular dynamics from E2P to E1 with two K+ ions in the occlusion site. The models were inserted into a lipid bilayer system and were stable over the time course of the simulations, and K+ ions in the channel moved to a consistent location near the center of the membrane domain, thus defining the occlusion site. The backbone carbonyl oxygen from residues 337 through 342 on the nonhelical turn of M4, as well as side-chain oxygen from E343, E795, and E820, participated in the ion occlusion. A single water molecule was stably bound between the two K+ ions in the occlusion site, providing an additional ligand and partial shielding the positive charges from one another. Targeted molecular dynamics was used to transform the protein from the E2P to the E1 state (two K+ ions to the cytoplasm). This simulation identified the separation of the water column in the entry channel as the likely gating mechanism on the luminal side. A hydrated exit channel also formed on the cytoplasmic side of the occlusion site during this simulation. Hence, water molecules became available to hydrate the ions. The movement of the M1M2 transmembrane segments, and the displacement of residues Q159, E160, Q110, and T152 during the conformational change, as well as the motions of E343 and L346, acted as the cytoplasmic-side gate.  相似文献   

8.
Biological membranes composed of lipids and proteins are in contact with electrolytes like aqueous NaCl solutions. Based on molecular dynamics studies it is widely believed that Na+ ions specifically bind to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes, whereas Cl ions stay in solution. Here, we present a careful comparison of recent data from electrophoresis and isothermal titration calorimetry experiments as well as molecular dynamics simulations suggesting that in fact both ions show very similar affinities. The corresponding binding constants are 0.44(±0.05) M−1 for Na+ and 0.40(±0.04) M−1 for Cl ions. This is highlighted by our observation that a widely used simulation setup showing asymmetric affinities of Na+ and Cl for POPC bilayers overestimates the effect of NaCl on the electrophoretic mobility of a POPC membrane by an order of magnitude. Implications for previous simulation results on the effect of NaCl on polarization of interfacial water, transmembrane potentials, and mechanisms for ion transport through bilayers are discussed. Our findings suggest that a range of published simulations results on the interaction of NaCl with phosphocholine bilayers have to be reconsidered and revised and that force field refinements are necessary for reliable simulation studies of membranes at physiological conditions on a molecular level.  相似文献   

9.
Abstract

Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G7) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the O6 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 Å from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na+ counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, O6 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.  相似文献   

10.
The dynamic behavior of the HCV IRES IIId domain is analyzed by means of a 2.6-ns molecular dynamics simulation, starting from an NMR structure. The simulation is carried out in explicit water with Na+ counterions, and particle-mesh Ewald summation is used for the electrostatic interactions. In this work, we analyze selected patterns of the helix that are crucial for IRES activity and that could be considered as targets for the intervention of inhibitors, such as the hexanucleotide terminal loop (more particularly its three consecutive guanines) and the loop-E motif. The simulation has allowed us to analyze the dynamics of the loop substructure and has revealed a behavior among the guanine bases that might explain the different role of the third guanine of the GGG triplet upon molecular recognition. The accessibility of the loop-E motif and the loop major and minor groove is also examined, as well as the effect of Na+ or Mg2+ counterion within the simulation. The electrostatic analysis reveals several ion pockets, not discussed in the experimental structure. The positions of these ions are useful for locating specific electrostatic recognition sites for potential inhibitor binding. Figure Superposition of 14 structures representative of the evolution of IRES IIId RNA along 2.6-ns MD simulation  相似文献   

11.
The stability and dynamics of a double-stranded DNA (dsDNA) is affected by the preferential occupancy of small monovalent molecular ions. Small metal and molecular ions such as sodium and alkyl ammonium have crucial biological functions in human body, affect the thermodynamic stability of the duplex DNA and exhibit preferential binding. Here, using atomistic molecular dynamics simulations, we investigate the preferential binding of metal ion such as Na+ and molecular ions such as tetramethyl ammonium (TMA+) and 2-hydroxy-N,N,N-trimethylethanaminium (CHO+) to double-stranded DNA. The thermodynamic driving force for a particular molecular ion-DNA interaction is determined by decomposing the free energy of binding into its entropic and enthalpic contributions. Our simulations show that each of these molecular ions preferentially binds to the minor groove of the DNA and the extent of binding is highest for CHO+. The ion binding processes are found to be entropically favourable. In addition, the contribution of hydrophobic effects towards the entropic stabilisation (in case of TMA+) and the effect of hydrogen bonding contributing to enthalpic stabilisation (in case of CHO+) have also been investigated.  相似文献   

12.
The effects of different alkali and alkali-earth metal ions on the electronic structures and properties of sodalite Mn[AlSiO4]6 (M-SOD) and their hydrates Mn[AlSiO4]6?8H2O (M=Li, Na, K, n = 6; M=Ca, n = 3) were studied using density functional theory method. Theoretical calculations predicted that the Al–O–Si bond angle and cation-framework oxide distance in sodalites with alkali metal cations are correlated with cell volumes. The reduced bandwidths in M-SOD (M=Li, Na and K) show that the inter-atomic orbital overlap in sodalites is weaker than those in the hydrate phases. Frontier molecular orbital analysis indicated that oxygen atoms in the frameworks and most metal ions of SOD and their corresponding hydrates exhibit high reactivity. The interactions existing in sodalites and hydrates were qualitative described. The calculated combination energies of metal ions with framework of sodalites are in the order of K+< Na+< Li+< Ca2+. This finding confirms the experimental observation for ion exchange.  相似文献   

13.
The relative stabilities of the alkali [M ⊂ 222]+ cryptates (M = Na, K, Rb and Cs) in the gas phase and in solution (80:20 v/v methanol:water mixture) at 298 K, are computed using a combination of ab initio quantum-chemical calculations (HF/6-31G and MP2/6-31+G*//HF/6-31+G*) and explicit-solvent Monte Carlo free-energy simulations. The results suggest that the relative stabilities of the cryptates in solution are due to a combination of steric effects (compression of large ions within the cryptand cavity), electronic effects (delocalization of the ionic charge onto the cryptand atoms) and solvent effects (dominantly the ionic dessolvation penalty). Thus, the relative stabilities in solution cannot be rationalized solely on the basis of a simple match or mismatch between the ionic radius and the cryptand cavity size as has been suggested previously. For example, although the [K ⊂ 222]+ cryptate is found to be the most stable in solution, in agreement with experimental data, it is the [Na ⊂ 222]+ cryptate that is the most stable in the gas phase. The present results provide further support to the notion that the solvent in which supramolecules are dissolved plays a key role in modulating molecular recognition processes. Figure Alkali cryptates [M ⊂ 222]+ (M = Na, K, Rb and Cs) relative stabilities in gas and methanol:water solution: solvent effects and molecular recognition
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The ability of biological ion channels to conduct selected ions across cell membranes is critical for the survival of both animal and bacterial cells. Numerous investigations of ion selectivity have been conducted over more than 50 years, yet the mechanisms whereby the channels select certain ions and reject others are not well understood. Here we report a new application of Jarzynski’s Equality to investigate the mechanism of ion selectivity using non-equilibrium molecular dynamics simulations of Na+ and K+ ions moving through the KcsA channel. The simulations show that the selectivity filter of KcsA adapts and responds to the presence of the ions with structural rearrangements that are different for Na+ and K+. These structural rearrangements facilitate entry of K+ ions into the selectivity filter and permeation through the channel, and rejection of Na+ ions. A mechanistic model of ion selectivity by this channel based on the results of the simulations relates the structural rearrangement of the selectivity filter to the differential dehydration of ions and multiple-ion occupancy and describes a mechanism to efficiently select and conduct K+. Estimates of the K+/Na+ selectivity ratio and steady state ion conductance for KcsA from the simulations are in good quantitative agreement with experimental measurements. This model also accurately describes experimental observations of channel block by cytoplasmic Na+ ions, the “punch through” relief of channel block by cytoplasmic positive voltages, and is consistent with the knock-on mechanism of ion permeation.  相似文献   

15.
The characteristics of ion solvation are important for electrochemical and biophysical phenomena because all such phenomena occur under the presence of solvated ions. In this study, we performed an all-atom molecular dynamics simulation of aqueous NaCl ranging from 0.5 to 3.0 M, and aqueous NaF, NaBr and NaI in 2.0 M, to investigate the time-averaged velocity auto-correlation function (TAVAF) of ions and water molecules. By comparing the concentrations and ion pairs, we observed three behaviours: (i) in the case of NaCl, the velocity auto-correlation of Cl becomes weaker as the concentration increases, whereas those of Na+ are not clearly different, (ii) the intensity of fluctuations of the TAVAF gradually decreases following the decrease in ionic radius and (iii) every TAVAF of water molecules in ionic solutions is clearly lower than that of bulk because of the cage effect. Furthermore, we observed that the first minimum of the TAVAF in the cluster is smaller than that of the isolated ions. These results indicate that the diffusion of ions and water molecules is affected by cage effect, and that the generation of ion cluster affects the diffusion of ions.  相似文献   

16.
Glutamate transporters (GluTs) are the primary regulators of extracellular concentration of the neurotransmitter glutamate in the central nervous system. In this study, we have investigated the dynamics and coupling of the substrate and Na+ binding sites, and the mechanism of cotransport of Na+ ions, using molecular dynamics simulations of a membrane-embedded model of GluT in its apo (empty form) and various Na+- and/or substrate-bound states. The results shed light on the mechanism of the extracellular gate and on the sequence of binding of the substrate and Na+ ions to GluT during the transport cycle. The results suggest that the helical hairpin HP2 plays the key role of the extracellular gate for the substrate binding site, and that the opening and closure of the gate is controlled by substrate binding. GluT adopts an open conformation in the absence of the substrate exposing the binding sites of the substrate and Na+ ions to the extracellular solution. Based on the calculated trajectories, we propose that Na1 is the first element to bind GluT, as it is found to be important for the completion of the substrate binding site. The subsequent binding of the substrate, in turn, is shown to result in an almost complete closure of the extracellular gate and the formation of the Na2 binding site. Finally, binding of Na2 locks the extracellular gate and completes the formation of the occluded state of GluT.  相似文献   

17.
The stability of the KcsA channel accommodating more than one ion in the pore has been studied with molecular dynamics. We have used the very last X-ray structure of the KcsA channel at 2.0-Å resolution determined by Zhou et al. [Nature 414 (2001) 43]. In this channel, six of the seven experimentally evidenced sites have been considered. We show that the protein remains very stable in the presence of four K+ ions (three in the selectivity filter and one in the cavity). The locations and the respective distances of the different K+ ions and water molecules (W), calculated within our KWKWKK sequence, also fits well with the experimental observations. The analysis of the K+ ions and water molecules displacements shows concerted file motions on the simulated time scale (≈1 ns), which could act as precursor to the diffusion of K+ ions inside the channel. A simple one-dimensional dynamical model is used to interpret the concerted motions of the ions and water molecules in the pore leading ultimately to ion transfer.  相似文献   

18.
The effects of the five Group I monovalent ions, Li, Na, K, Rb, and Cs, on [3H]acetylcholine binding to Triton X-100 solubilized acetylcholine receptor from Torpedo californica electroplax were examined. Acetylcholine binding was not greatly affected by Li or Na, but was inhibited by the other ions in the order Cs > Rb > K. The inhibition by K appeared to occur by a mechanism identical to that for d-tubocurarine inhibition of acetylcholine binding.  相似文献   

19.
An understanding of ion–protein interactions is key to a better understanding of the molecular mechanisms of proteins, such as enzymes, ion channels, and ion pumps. A potassium ion channel, KcsA, has been extensively studied in terms of ion selectivity. Alkali metal cations in the selectivity filter were visualized by X-ray crystallography. Infrared spectroscopy has an intrinsically higher structural sensitivity due to frequency changes in molecular vibrations interacting with different ions. In this review article, I attempt to summarize ion-exchange-induced differences in Fourier transform infrared spectroscopy, as applied to KcsA, to explain how this method can be utilized to study ion–protein interactions in the KcsA selectivity filter. A band at 1680 cm?1 in the amide I region would be a marker band for the ion occupancy of K+, Rb+, and Cs+ in the filter. The band at 1627 cm?1 observed in both Na+ and Li+ conditions suggests that the selectivity filter similarly interacts with these ions. In addition to the structural information, the results show that the titration of K+ ions provides quantitative information on the ion affinity of the selectivity filter.  相似文献   

20.
Allostery plays a crucial role in the mechanism of neurotransmitter-sodium symporters, such as the human dopamine transporter. To investigate the molecular mechanism that couples the transport-associated inward release of the Na+ ion from the Na2 site to intracellular gating, we applied a combination of the thermodynamic coupling function (TCF) formalism and Markov state model analysis to a 50-μs data set of molecular dynamics trajectories of the human dopamine transporter, in which multiple spontaneous Na+ release events were observed. Our TCF approach reveals a complex landscape of thermodynamic coupling between Na+ release and inward-opening, and identifies diverse, yet well-defined roles for different Na+-coordinating residues. In particular, we identify a prominent role in the allosteric coupling for the Na+-coordinating residue D421, where mutation has previously been associated with neurological disorders. Our results highlight the power of the TCF analysis to elucidate the molecular mechanism of complex allosteric processes in large biomolecular systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号