共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Maharajan Sivakumar Kandasamy Saravanan Velautham Saravanan Srinivasan Sugarthi Shankar Madan kumar Mustafa Alhaji Isa 《Journal of biomolecular structure & dynamics》2020,38(7):1903-1917
AbstractThe most common brain disorder of late life is Alzheimer’s disease (AD), which is highly complicating dementia. There are several drug targets which are reported to control the severe level of AD; notably, acetylcholinesterase, β-Secretase and glycogen synthase kinase enzymes are approached as a good drug targets for AD. Hence, the present study mainly focused to discover newly synthesized molecule (7-propyl-6H-pyrano[3,2-c:5,6-c']dichromene-6,8(7H)-dione) as a potential triplet acting drug for above said enzymes through the analysis of X-ray crystallography, molecular docking, molecular dynamics and quantum chemical calculation. The target drug molecule was crystallized in the monoclinic crystal structure with P21/n space group. The structure was solved by SHELXS and refined by SHELXL. The crystal packing is stabilized by C???H···O type of interactions. Further, the induced fit docking shows that the molecule has high docking score, glide energy, favorable hydrogen bonding and hydrophobic interactions on the protein targets. The molecular dynamics simulation was performed to understand the stability of the molecule in the presence of active site environment. Finally, quantum chemical calculation has been carried out for the molecule in gas phase and for the corresponding molecule lifted from the active site region. The structural comparison between gas phase and active site helps to understand the conformational modification of the molecule in the active site. Communicated by Ramaswamy H. Sarma 相似文献
3.
Omolbanin Shahraki Farshid Zargari Mehdi Khoshneviszadeh Omidreza Firuzi 《Journal of biomolecular structure & dynamics》2018,36(1):112-125
P-glycoprotein (P-gp) is a main factor contributing to multidrug resistance. The effect of this transporter protein on limiting the effectiveness of chemotherapy has been shown by various studies. In a previous report, we synthesized some 14-dihydropyridine (DHP) derivatives as inhibitors of human P-gp. In the present study, a computational approach has been exploited to reveal the main interactions between DHPs and P-gp. In order to do this, homology modeling was performed to obtain a model of the protein. Then, molecular dynamics simulation was used to refine the constructed model of P-gp in the presence of the lipids bilayer. Model validation was performed with several tools. Finally, molecular docking followed by MD simulation of ligand–protein complex was employed to elucidate the binding mode and the dynamical changes of protein with/without DHPs bound. The results emphasized that interaction of the residues Gln912, Ser909, Arg905, Ser474, Val472 with DHPs play a crucial role in the inhibitory of these ligands and this was in a relatively good accordance with the results reported in the experimental studies. 相似文献
4.
《Expert review of proteomics》2013,10(6):783-792
Parkinson’s disease (PD) is a severe, progressive, age-associated, neurodegenerative disorder. Current therapies are symptomatic and not effective at halting or significantly slowing the disease progress. The search for etiologic-based therapies has focused largely on genetic findings made in familial forms of this disease. Mutations of five genes have been unequivocally linked to PD; two of these, LRRK2 and PINK1, encode kinases and as such are attractive tools with which to understand the disease process; furthermore, preliminary functional data suggests that these proteins, or the pathways in which they are involved, are viable therapeutic targets. Here we explore the current data and thoughts regarding LRRK2 and PINK1 and discuss further avenues of research to understand the pathologic effects of mutations at these loci and potential points of therapeutic intervention, such as within these kinases or in associated pathways such as Jun N-terminal kinase and Akt pathways. 相似文献
5.
6.
Neuroprotection refers to the relative preservation of neuronal structure and function. Neuroprotective agents refer to substances that are capable of preserving brain function and structure. Currently, there are no neuroprotective agents available that can effectively relieve the progression of Parkinson’s disease. In this work, five novel 4-aminopyridine derivatives, including three amides and two ureas, were designed, synthesized, and evaluated using the rat PC12 mice pheochromocytoma cell line as an in vitro model. As well as human Rho kinase inhibitory experiment was performed. Among them, compound 3, which exhibited high cell viability, low cytotoxicity and good efficacy of inhibition on α-synuclein, oxidation, inflammation and Rho kinase, was profound as potential agents for Parkinson’s disease (PD). 相似文献
7.
A novel series of triazole-based compounds have been designed, synthesised and evaluated as multi-target-directed ligands (MTDLs) against Alzheimer disease (AD). The triazole-based compounds have been designed to target four major AD hallmarks that include Aβ aggregation, metal-induced Aβ aggregation, metal dys-homeostasis and oxidative stress. Among the synthesised compounds, 6n having o-CF3 group on the phenyl ring displayed most potent inhibitory activity (96.89% inhibition, IC50 = 8.065 ± 0.129 μM) against Aβ42 aggregation, compared to the reference compound curcumin (95.14% inhibition, IC50 = 6.385 ± 0.009 μM). Compound 6n disassembled preformed Aβ42 aggregates as effectively as curcumin. Furthermore, 6n displayed metal chelating ability and significantly inhibited Cu2+-induced Aβ42 aggregation and disassembled preformed Cu2+-induced Aβ42 aggregates. 6n successfully controlled the generation of the reactive oxygen species (ROS) by preventing the copper redox cycle. In addition, 6n did not display cytotoxicity and was able to inhibit toxicity induced by Aβ42 aggregates in SH-SY5Y cells. The preferred binding regions and key interactions of 6n with Aβ42 monomer and Aβ42 protofibril structure was evaluated with molecular docking. Compound 6n binds preferably to the C-terminal region of Aβ42 that play a critical role in Aβ42 aggregation. The results of the present study highlight a novel triazole-based compound, 6n, as a promising MTDL against AD. 相似文献
8.
Hye Ri Park Jiyoon Kim Taekeun Kim Seonmi Jo Miyoung Yeom Bongjin Moon Il Han Choo Jaeick Lee Eun Jeong Lim Ki Duk Park Sun-Joon Min Ghilsoo Nam Gyochang Keum C. Justin Lee Hyunah Choo 《Bioorganic & medicinal chemistry》2013,21(17):5480-5487
In Parkinson’s disease, the motor impairments are mainly caused by the death of dopaminergic neurons. Among the enzymes which are involved in the biosynthesis and catabolism of dopamine, monoamine oxidase B (MAO-B) has been a therapeutic target of Parkinson’s disease. However, due to the undesirable adverse effects, development of alternative MAO-B inhibitors with greater optimal therapeutic potential towards Parkinson’s disease is urgently required. In this study, we designed and synthesized the oxazolopyridine and thiazolopyridine derivatives, and biologically evaluated their inhibitory activities against MAO-B. Structure–activity relationship study revealed that the piperidino group was the best choice for the R1 amino substituent to the oxazolopyridine core structure and the activities of the oxazolopyridines with various phenyl rings were between 267.1 and 889.5 nM in IC50 values. Interestingly, by replacement of the core structure from oxazolopyrine to thiazolopyridine, the activities were significantly improved and the compound 1n with the thiazolopyridine core structure showed the most potent activity with the IC50 value of 26.5 nM. Molecular docking study showed that van der Waals interaction in the human MAO-B active site could explain the enhanced inhibitory activities of thiazolopyridine derivatives. 相似文献
9.
Among the neurodegenerative diseases (ND), Parkinson’s disease affects 6.3 million people worldwide characterized by the progressive loss of dopaminergic neurons in substantia nigra. The mitochondrial permeability transition pore (mtPTP) is a non-selective voltage-dependent mitochondrial channel whose opening modifies the permeability properties of the mitochondrial inner membrane. It is recognized as a potent pharmacological target for diseases associated with mitochondrial dysfunction and excessive cell death including ND such as Parkinson’s disease (PD). Imbalance in Ca2+ concentration, change in mitochondrial membrane potential, overproduction of reactive oxygen species (ROS), or mutation in mitochondrial genome has been implicated in the pathophysiology of the opening of the mtPTP. Different proteins are released by permeability transition including cytochrome c which is responsible for apoptosis. This review aims to discuss the importance of PTP in the pathophysiology of PD and puts together different positive as well as negative aspects of drugs such as pramipexole, ropinirole, minocyclin, rasagilin, and safinamide which act as a blocker or modifier for mtPTP. Some of them may be detrimental in their neuroprotective nature. 相似文献
10.
Alejandro Romero Ramón Cacabelos María J. Oset-Gasque Abdelouahid Samadi José Marco-Contelles 《Bioorganic & medicinal chemistry letters》2013,23(7):1916-1922
A summary of the recently published efforts on tacrine derivatives as a renewed potential therapeutic approach for the treatment of Alzheimer’s disease is presented. 相似文献
11.
Hansruedi Büeler 《Apoptosis : an international journal on programmed cell death》2010,15(11):1336-1353
The structure and function of the mitochondrial network is regulated by mitochondrial biogenesis, fission, fusion, transport
and degradation. A well-maintained balance of these processes (mitochondrial dynamics) is essential for neuronal signaling,
plasticity and transmitter release. Core proteins of the mitochondrial dynamics machinery play important roles in the regulation
of apoptosis, and mutations or abnormal expression of these factors are associated with inherited and age-dependent neurodegenerative
disorders. In Parkinson’s disease (PD), oxidative stress and mitochondrial dysfunction underlie the development of neuropathology.
The recessive Parkinsonism-linked genes PTEN-induced kinase 1 (PINK1) and Parkin maintain mitochondrial integrity by regulating diverse aspects of mitochondrial function, including membrane potential, calcium
homeostasis, cristae structure, respiratory activity, and mtDNA integrity. In addition, Parkin is crucial for autophagy-dependent
clearance of dysfunctional mitochondria. In the absence of PINK1 or Parkin, cells often develop fragmented mitochondria. Whereas
excessive fission may cause apoptosis, coordinated induction of fission and autophagy is believed to facilitate the removal
of damaged mitochondria through mitophagy, and has been observed in some types of cells. Compensatory mechanisms may also
occur in mice lacking PINK1 that, in contrast to cells and Drosophila, have only mild mitochondrial dysfunction and lack dopaminergic neuron loss. A better understanding of the relationship between
the specific changes in mitochondrial dynamics/turnover and cell death will be instrumental to identify potentially neuroprotective
pathways steering PINK1-deficient cells towards survival. Such pathways may be manipulated in the future by specific drugs
to treat PD and perhaps other neurodegenerative disorders characterized by abnormal mitochondrial function and dynamics. 相似文献
12.
《Bioorganic & medicinal chemistry》2020,28(21):115605
One of the most prevailing metabolic disorder diabetes mellitus has become the global health issue that has to be addressed and cured. Different marketed drugs have been made available for the treatment of diabetes but there is still a need of introducing new therapeutic agents that are economical and have lesser or no side effects. The current study deals with the synthesis of indole acrylonitriles (3–23) and the evaluation of these compounds for their potential for α-glucosidase inhibition. The structures of these synthetic molecules were deduced by using different spectroscopic techniques. Acarbose (IC50 = 2.91 ± 0.02 μM) was used as standard in this study and the synthetic molecules (3–23) have shown promising α-glucosidase inhibitory activity. Compounds 4, 8, 10, 11, 14, 18, and 21 displayed superior inhibition of α-glucosidase enzyme in the range of (IC50 = 0.53 ± 0.01–1.36 ± 0.04 μM) as compared to the standard acarbose. Compound 10 (IC50 = 0.53 ± 0.01 μM) was the most effective inhibitor of this library and displayed many folds enhanced activity in contrast to the standard. Molecular docking of synthetic compounds was performed to verify the binding interactions of ligand with the active site of enzyme. This study had identified a number of potential α-glucosidase inhibitors that can be used for further research to identify a potent therapeutic agent against diabetes. 相似文献
13.
In an attempt to find potential anticancer agents, a series of novel ethyl 4-(3-(aryl)-1-phenyl-1H-pyrazol-4-yl)-2-oxo-6-(pyridin-3-yl)cyclohex-3-enecarboxylates 5a-i and 5-(3-(4-fluorophenyl)-1-phenyl-1H-pyrazol-4-yl)-3-(pyridin-3-yl)-4,5-dihydropyrazole-1-carbothioamides 6a-i were designed, synthesized and evaluated for their topoisomerase IIα inhibitory activity and in vitro cytotoxicity against a panel of cancerous cell lines (MCF-7, NCI-H460, HeLa) and a normal cell line (HEK-293T). Molecular docking studies of all the synthesized compounds into the binding site of topoisomerase IIα protein (PDB ID: 1ZXM) were performed to gain a comprehensive understanding into plausible binding modes. These compounds were also screened for in silico drug-likeliness properties on the basis of the absorption, distribution, metabolism and excretion (ADME) prediction. Among all the synthesized compounds, analogue 5d showed superior cytotoxicity with an IC50 value of 7.01 ± 0.60 μM for HeLa, 8.55 ± 0.35 μM for NCI-H460 and 14.31 ± 0.90 for MCF-7 cancer cell lines. Further, compound 5d showed 70.82% inhibition of topoisomerase IIα at a concentration of 100 μM with maximum docking score of −8.24. Results of ADME prediction revealed that most of these compounds showed in silico drug-likeliness properties within the ideal range. 相似文献
14.
Parkinson’s disease (PD) is the most common movement disorder. The neuropathology is characterized by the loss of dopamine
neurons in the substantia nigra pars compacta. Transplants of fetal/embryonic midbrain tissue have exhibited some beneficial
clinical effects in open-label trials. Neural grafting has, however, not become a standard treatment for several reasons.
First, the supply of donor cells is limited, and therefore, surgery is accompanied by difficult logistics. Second, the extent
of beneficial effects has varied in a partly unpredictable manner. Third, some patients have exhibited graft-related side
effects in the form of involuntary movements. Fourth, in two major double-blind placebo-controlled trials, there was no effect
of the transplants on the primary endpoints. Nevertheless, neural transplantation continues to receive a great deal of interest,
and now, attention is shifting to the idea of using stem cells as starting donor material. In the context of stem cell therapy
for PD, stem cells can be divided into three categories: neural stem cells, embryonic stem cells, and other tissue-specific
types of stem cells, e.g., bone marrow stem cells. Each type of stem cell is associated with advantages and disadvantages.
In this article, we review recent advances of stem cell research of direct relevance to clinical application in PD and highlight
the pros and cons of the different sources of cells. We draw special attention to some key problems that face the translation
of stem cell technology into the clinical arena. 相似文献
15.
Wen-Yu Wu Yu-Chen Dai Ze-Xi Dong Ting Gu Zhi-Hao Shi 《Journal of enzyme inhibition and medicinal chemistry》2017,32(1):572-587
Alzheimer’s disease (AD) is a neurodegenerative disorder, which is complex and progressive; it has not only threatened the health of elderly people, but also burdened the whole social medical and health system. The available therapy for AD is limited and the efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the design and development of efficacious and safe anti-AD agents has become a hotspot in the field of pharmaceutical research. Due to the multifactorial etiology of AD, the multitarget-directed ligands (MTDLs) approach is promising in search for new drugs for AD. Tacrine, which is the first acetylcholinesterase (AChE) inhibitor, has been selected as the ideal active fragment because of its simple structure, clear activity, and its superiority in the structural modification, thus it could be introduced into the overall molecular skeletons of the multi-target-directed anti-AD agents. In this review, we have summarized the recent advances (2012 to the present) in the chemical modification of tacrine, which could provide the reference for the further study of novel multi-target-directed tacrine derivatives to treat AD. 相似文献
16.
A series of amino acids conjugated quinazolinone-Schiff’s bases were synthesized and characterized by analytical and spectroscopic methods. All the synthesized analogues (8–43) and the intermediates (1–7) were screened for their in vitro antibacterial and antifungal activities. In antimicrobial activity, compounds 12–16, 21–25, 30–34 and 39–43 showed excellent antibacterial activity which is better than the antibacterial standard Streptomycin. Compounds 15, 23–25, 30–34, 36 and 38–43 showed excellent antifungal activities which is more active than the reference antifungal drug Bavistin. Further, to understand the correlation of biological activity with that of drug-receptor interaction, molecular docking was performed on active site ofglucosamine-6-Phosphate (GlcN-6-P) synthase (PDB ID: 2VF5) which showed good binding profile. Molecular docking studies and Preliminary structure-activity (SAR) relationship revealed that the tryptophan and phenylalanine conjugated quinazolinones with electron donating groups (OH and OCH3) were found to be excellent antimicrobial activities which is better than the glycine and alanine conjugated derivatives. This may be explained by the contribution of aromaticity and hydrophobicity of amino acids. Among the series, compounds 41 and 43 showed the highest docking scores for antimicrobial activity. The conjugation plays a major role in improving the biological activities of those compounds. 相似文献
17.
《Bioorganic & medicinal chemistry letters》2014,24(18):4490-4495
Since high MAO-B levels are present in early stages of AD, the MAO-B system can be designated as an appropriate and prospective tracer target of molecular imaging biomarkers for the detection of early AD. According to the preceding investigations of Mishra et al. the aim of this work was the development of a compound library of selective and reversible MAO-B inhibitors by performing bioisosteric modifications of the core structure of 3-(anthracen-9-yl)-5-phenyl-4,5-dihydro-1H-pyrazoles. In conclusion, 13 new pyrazoline based derivatives have been prepared, which will serve as precursor substances for future radiolabeling as well as reference compounds for the investigation of increased MAO-B levels in AD. 相似文献
18.
Kuldeep K. Roy Santoshkumar Tota Tusha Tripathi Subhash Chander Chandishwar Nath Anil K. Saxena 《Bioorganic & medicinal chemistry》2012,20(21):6313-6320
The optimization of our previous lead compound 1 (AChE IC50 = 3.31 μM) through synthesis and pharmacology of a series of novel carbamates is reported. The synthesized compounds were evaluated against mouse brain AChE enzyme using the colorimetric method described by Ellman et al. The three compounds 6a (IC50 = 2.57 μM), 6b (IC50 = 0.70 μM) and 6i (IC50 = 2.56 μM) exhibited potent in vitro AChE inhibitory activities comparable to the drug rivastigmine (IC50 = 1.11 μM). Among them, the compound 6b has been selected as possible optimized lead for further neuropharmacological studies. In addition, the AChE–carbamate Michaelis complexes of these potent compounds including rivastigmine and ganstigmine have been modeled using covalent docking protocol of GOLD and important direct/indirect interactions contributing to stabilization of the AChE–carbamate Michaelis complexes have been investigated. 相似文献
19.
In search of potent α-amylase inhibitor we have synthesized eighteen indole analogs (1–18), characterized by NMR and HR-EIMS and screened for α-amylase inhibitory activity. All analogs exhibited a variable degree of α-amylase inhibition with IC50 values ranging between 2.031 ± 0.11 and 2.633 ± 0.05 μM when compared with standard acarbose having IC50 values 1.927 ± 0.17 μM. All compounds showed good α-amylase inhibition. Compound 14 was found to be the most potent analog among the series. Structure-activity relationship has been established for all compounds mainly based on bringing about the difference of substituents on phenyl ring. To understand the binding interaction of the most active analogs molecular docking study was performed. 相似文献
20.
《Cell calcium》2020
Parkinson’s disease (PD) is a major health problem worldwide affecting millions of people and is a result of neurodegeneration in a small part of the brain known as substantia nigra pars compacta. Aberration in mitochondrial Ca2+ homeostasis plays, among several other factors, an important role for the neuronal loss in PD. Mitochondria are vital for cellular physiology, e.g. for ATP generation, and mitochondrial Ca2+ is a key player in cell functioning and survival. Mitochondrial Ca2+ homeostasis is maintained by a fine balance between the activities of proteins mediating the influx and efflux of Ca2+ across mitochondrial membranes. Malfunctioning of these proteins leading to Ca2+ overload promotes ROS generation, which induces cell death by triggering the opening of mitochondrial permeability transition pore. Till now PD remains incurable and the “gold standard” drug which can only delays the disease progression is l-Dopa from the 1960s and therefore, the situation warrants the search for novel targets for the treatment of the PD patients. In this review, we summarize the current views that suggest mitochondrial Ca2+ regulatory pathways are good candidates for the treatment of PD. 相似文献