首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The impact and control of biofouling in marine aquaculture: a review   总被引:2,自引:0,他引:2  
Biofouling in marine aquaculture is a specific problem where both the target culture species and/or infrastructure are exposed to a diverse array of fouling organisms, with significant production impacts. In shellfish aquaculture the key impact is the direct fouling of stock causing physical damage, mechanical interference, biological competition and environmental modification, while infrastructure is also impacted. In contrast, the key impact in finfish aquaculture is the fouling of infrastructure which restricts water exchange, increases disease risk and causes deformation of cages and structures. Consequently, the economic costs associated with biofouling control are substantial. Conservative estimates are consistently between 5-10% of production costs (equivalent to US$ 1.5 to 3 billion yr(-1)), illustrating the need for effective mitigation methods and technologies. The control of biofouling in aquaculture is achieved through the avoidance of natural recruitment, physical removal and the use of antifoulants. However, the continued rise and expansion of the aquaculture industry and the increasingly stringent legislation for biocides in food production necessitates the development of innovative antifouling strategies. These must meet environmental, societal, and economic benchmarks while effectively preventing the settlement and growth of resilient multi-species consortia of biofouling organisms.  相似文献   

2.
Nick Aldred 《Biofouling》2014,30(3):259-270
Globally, ascidians are a significant contributor to benthic marine fouling communities, but have remained poorly studied in this context. In some cases, such as in shellfish and finfish aquaculture, ascidians are the most problematic of all fouling organisms. The disproportionate impact of ascidian fouling in some specific geographic locations has been related directly to anthropogenic translocation of these organisms around the globe. In the case of ascidians, therefore, the economic issue of biofouling and the ecological ramifications of invasion are inextricably linked. This mini-review briefly discusses the introduction of non-native ascidians to areas where they have subsequently proven to be a significant fouling pest. The elements of ascidian reproductive ecology that support their aggressive fouling character are discussed and the scant information pertaining to their adhesion and adhesives is presented. Finally, strategies for mitigating ascidian fouling are examined. It is suggested that sufficient working knowledge currently exists to support the inclusion of one or more common ascidian species as ‘standard’ test organisms used for evaluation of novel fouling-resistant surfaces.  相似文献   

3.
沼蛤是一种典型的淡水入侵贝类,能够利用其分泌的足丝牢固黏附在多种水下基质表面,引起严重的生物污损问题。沼蛤污损不但影响水生态系统健康,也给水利工程、交通运输、水产养殖等行业带来经济损失,已成为全球水生态系统安全和国民经济重要行业的潜在威胁,相关防污工作亟待开展。欲从根本上解决沼蛤污损问题,一方面需要加强对其基础生物学特性和污损机制的深入解析,另一方面也需要在此基础上研发更加经济、高效、环境友好的防污措施。本文综述了近年来国内外关于沼蛤污损生物学特性、污损机制和防污措施方面的研究进展,尤其是对沼蛤生物污损发生的主要机制如足探测识别、足丝黏附和环境影响等方面进行了总结,也从物理、化学、生物和防污材料等角度阐述了现有的沼蛤污损控制措施并对未来发展方向进行了展望,以期更加深入地理解沼蛤生物污损现象,为揭示其作用机制、制定科学有效的防污措施、维护水生态系统安全提供数据支撑,综述内容对于水下仿生材料研发也具有重要的参考价值。  相似文献   

4.
Nature provides many examples of mechanisms to control fouling. These defences can be copied (biomimetic) or tailored (bioinspired) to solve problems of fouling on manmade structures. With increasing research in this area over the last two decades, it is timely to review this burgeoning subject, in particular as the biofouling field shifts focus towards novel, physical mechanisms to prevent and control fouling. This change is being promoted by advances in nano- and micro-scale patterning as well as in a variety of nano-biotechnologies, which are transforming the translation of natural surfaces into experimental materials. In this article, research on the defence of marine organisms against fouling and the technologies they are defining is reviewed.  相似文献   

5.
As part of ongoing commitments to produce electricity from renewable energy sources in Scotland, Orkney waters have been targeted for potential large-scale deployment of wave and tidal energy converting devices. Orkney has a well-developed infrastructure supporting the marine energy industry; recently enhanced by the construction of additional piers. A major concern to marine industries is biofouling on submerged structures, including energy converters and measurement instrumentation. In this study, the marine energy infrastructure and instrumentation were surveyed to characterise the biofouling. Fouling communities varied between deployment habitats; key species were identified allowing recommendations for scheduling device maintenance and preventing spread of invasive organisms. A method to measure the impact of biofouling on hydrodynamic response is described and applied to data from a wave-monitoring buoy deployed at a test site in Orkney. The results are discussed in relation to the accuracy of the measurement resources for power generation. Further applications are suggested for future testing in other scenarios, including tidal energy.  相似文献   

6.
Ecologically friendly aquaculture crops, such as seaweeds, herbivores, omnivores, and detritivores can be cultured using relatively less of our limited natural resources and produce relatively less pollution. They also top FAO’s estimates of aquaculture crops for the 21st century. These crops already comprise nearly 90% of global aquaculture tonnage, >90% of all aquaculture production in China and >60% of production even in North America. Consumers prefer them, most likely due to their low prices. Production costs of organisms low on the food chain are low due to the ability of these organisms to efficiently utilize low-cost, mostly plant-based diets and to recycle their own waste. Thus, ecologically friendly aquaculture is not a dream but a dominant global reality. The less ecologically-friendly aquaculture of salmon, sea bream, fed shrimp, among others, has attracted public opposition to aquaculture, but these crops totaled approximately only 10% of global production in 2004. The profitability of industrialized monocultures of these crops is threatened further by rising costs of energy and feed, environmental regulation compliance, disease, and public opposition. Current monoculture practices and perceptions intrinsic to the aquaculture industry can be turned around into a vision of sustained profitable expansion of carnivores production with trophically lower organisms in ecologically-balanced aquaculture farms. This category of aquaculture, which is the modern intensive form of polyculture practiced in Asia, feeds the waste of carnivore culture to lower trophic level organisms, primarily algae and mollusks. Species are selected based on their ecological functions in addition to their economic potential. Ecologically-balanced farms turn the costly treatment of carnivore waste outside the farm to a revenue-generating process of biofiltration, conversion, and resource recovery into plant and mollusk crops inside the farm. In doing so, they solve several of the major problems faced by modern aquaculture. The aquaculture industry can protect its own interests – and reap major benefits – by understanding the importance of ecological balance, the potential of seaweeds as components in feeds, and the importance of the culture and R&D of low trophic level organisms. The industry should also accept the relevance of environmental, social, and image aspects of aquaculture to its success. Governments have the tools to reward multi-trophic farms with seaweeds by means of tax credits and nutrient credits and to penalize unbalanced monoculture approaches by means of ‘polluter pays’ fines, thereby providing the multi-trophic farms with a significant economic advantage. Such measures have been discussed, but their implementation has been slow.  相似文献   

7.
A volumetric approach for determining the fouling burden on surfaces is presented, consisting of a 3D camera imaging system with fine (5?μm) resolution. Panels immersed in an estuary on the southwest coast of Florida, USA were imaged and the data were used to quantify seasonal changes in the biofouling community. Test panels, which were submerged in seawater for up to one?year, were analyzed before and after gentle scrubbing to quantify the biovolume of the total fouling community (ie soft and hard organisms) and the hard fouling community. Total biofouling ranged from 0.01 to 1.16?cm3 cm?2 throughout the immersion period; soft fouling constituted 22–87% of the total biovolume. In the future, this approach may be used to inform numerical models of fluid–surface interfaces and to evaluate, with high resolution, the morphology of fouling organisms in response to antifouling technologies.  相似文献   

8.
The global growth of farmed shellfish production has resulted in considerable research investigating how biofouling compromises farm productivity. Shellfish fitness can be compared between fouled stock and stock which has undergone treatment. As treatment options are often harsh, they may deleteriously affect stock. The projected impact of biofouling may therefore be confounded by the impact of treatments. Given the substantial cost of fouling removal, some have questioned the necessity of biofouling mitigation strategies. Meta-analysis revealed that biofouling typically reduces shellfish fitness. However, the fitness of treated stock was often lower or equal to fouled control stock, indicating that many common antifouling (AF) strategies are ineffective at enhancing farm productivity. Overall, caution and diligence are required to successfully implement biofouling mitigation strategies. The need remains for increased passive prevention approaches and novel AF strategies suitable for shellfish culture, such as strategic siting of bivalve farms in areas of low biofouling larval supply.  相似文献   

9.
The ability of carbon nanotubes (CNTs) to undergo surface modification allows them to form nanocomposites (NCs) with materials such as polymers, metal nanoparticles, biomolecules, and metal oxides. The biocidal nature, protein fouling resistance, and fouling release properties of CNT-NCs render them the perfect material for biofouling prevention. At the same time, the cytotoxicity of CNT-NCs can be reduced before applying them as substrates to promote biofilm formation in environmental biotechnology applications. This paper reviews the potential prospects of CNT-NCs to accomplish two widely varying objectives in environmental engineering applications: (i) preventing biofouling, and (ii) promoting the formation of desirable biofilms on materials surface. This paper addresses practical issues such as costs, risks to human health, and ecological impacts that are associated with the application, development and commercialization of CNT-NC technology.  相似文献   

10.
To avoid the negative impacts caused by biofouling development, aquaculture nets around the world are periodically cleaned using high-pressure washers. Net cleaning is labour-intense and costly, can damage antifouling coatings on the nets, and pose contamination as well as fish health and welfare risks. To support the environmental sustainability of the growing aquaculture sector, novel net cleaning methods are needed. This study examined low-pressure-, cavitation-, and suction-based cleaning technologies as alternatives to conventional high-pressure cleaning. Using field experiments, cleaning efficacy, cleaning waste generation, and the impact of cleaning on coating integrity and net strength were evaluated. Cavitation and high-pressure cleaning achieved considerably higher cleaning efficacy than low-pressure and suction cleaning. However, a single high-pressure treatment caused up to 53% coating degradation, compared to 2% for cavitation. All technologies produced similar cleaning waste and neither reduced net strength significantly. This study identifies cavitation cleaning as promising technology for biofouling control on aquaculture nets.  相似文献   

11.
Merchant vessels are equipped with antifouling systems to prevent accumulation of marine organisms on the hull—a phenomenon known as fouling. In many cases, however, fouling accumulates and in‐water hull cleaning is required. Hull cleanings are part of a hull management scheme, and although they are an established practice, their associated environmental and economic trade‐offs and conflicts have remained largely unexplored. The purpose of this article is to quantitatively assess both economic and environmental impacts of hull management schemes on the operation of tanker vessels. After identifying induced and avoided costs and environmental impacts from the hull management system, we used both temporally and spatially distributed models to capture the degradation of the antifouling system as well as the global sailing profile of the vessels. Last, we analyzed how each of the modeled impacts varied with the frequency of hull cleanings within the hull management scheme. Our analysis revealed a convex relationship between the frequency of hull cleanings and fuel savings. The higher the frequency of hull cleanings, the less fuel savings can be achieved per cleaning. In terms of costs, from some point on the costs of the service are likely to offset the savings—especially if fuel prices are low. In regards to climate change, avoided emissions due to fuel savings are likely to outweigh the limited impacts from the service itself. Last, while ecosystem impacts from marine, terrestrial, and freshwater eco‐toxicity are likely to increase from hull cleanings, they are subject to high uncertainties.  相似文献   

12.
The rapid development of intensive fed aquaculture (e.g. finfish and shrimp) throughout the world is associated with concerns about the environmental impacts of such often monospecific practices, especially where activities are highly geographically concentrated or located in suboptimal sites whose assimilative capacity is poorly understood and, consequently, prone to being exceeded. One of the main environmental issues is the direct discharge of significant nutrient loads into coastal waters from open-water systems and with the effluents from land-based systems. In its search for best management practices, the aquaculture industry should develop innovative and responsible practices that optimize its efficiency and create diversification, while ensuring the remediation of the consequences of its activities to maintain the health of coastal waters. To avoid pronounced shifts in coastal processes, conversion, not dilution, is a common-sense solution, used for centuries in Asian countries. By integrating fed aquaculture (finfish, shrimp) with inorganic and organic extractive aquaculture (seaweed and shellfish), the wastes of one resource user become a resource (fertilizer or food) for the others. Such a balanced ecosystem approach provides nutrient bioremediation capability, mutual benefits to the cocultured organisms, economic diversification by producing other value-added marine crops, and increased profitability per cultivation unit for the aquaculture industry. Moreover, as guidelines and regulations on aquaculture effluents are forthcoming in several countries, using appropriately selected seaweeds as renewable biological nutrient scrubbers represents a cost-effective means for reaching compliance by reducing the internalization of the total environmental costs. By adopting integrated polytrophic practices, the aquaculture industry should find increasing environmental, economic, and social acceptability and become a full and sustainable partner within the development of integrated coastal management frameworks.  相似文献   

13.
Swain G  Herpe S  Ralston E  Tribou M 《Biofouling》2006,22(5-6):425-429
Data from short-term biofouling assays are frequently used to evaluate the performance of antifouling (AF) coatings. There are a large number of factors, however, that may influence community development. One such factor is colour. The hypothesis was that differences in colour may impact the short-term development of a biofouling community and therefore bias the results. An experiment was designed to investigate the effect of black and white substrata on settlement of fouling organisms in the field. Both Ulva sp. and Spirorbis sp. had significantly higher settlement on black surfaces. This result emphasises the importance of considering colour and other factors when undertaking short-term testing of AF coatings.  相似文献   

14.
The proteinaceous nature of the adhesives used by most fouling organisms to attach to surfaces suggests that coatings incorporating proteolytic enzymes may provide a technology for the control of biofouling. In the present article, the antifouling (AF) and fouling release potential of model coatings incorporating the surface-immobilized protease, Subtilisin A, have been investigated. The enzyme was covalently attached to maleic anhydride copolymer thin films; the characteristics of the bioactive coatings obtained were adjusted through variation of the type of copolymer and the concentration of the enzyme solution used for immobilization. The bioactive coatings were tested for their effect on the settlement and adhesion strength of two major fouling species: the green alga Ulva linza and the diatom Navicula perminuta. The results show that the immobilized enzyme effectively reduced the settlement and adhesion strength of zoospores of Ulva and the adhesion strength of Navicula cells. The AF efficacy of the bioactive coatings increased with increasing enzyme surface concentration and activity, and was found to be superior to the equivalent amount of enzyme in solution. The results provide a rigorous analysis of one approach to the use of immobilized proteases to reduce the adhesion of marine fouling organisms and are of interest to those investigating enzyme-containing coating technologies for practical biofouling control.  相似文献   

15.
Abstract

This study determined economic non-destructive methods to assess biofouling in point of use reverse osmosis (RO) membrane treatment systems. Three parallel household RO membrane units were operated under controlled feed water conditions to promote biofouling, inorganic fouling and a combination of both. Operational and biological parameters were monitored throughout the systems’ lifespan. Membrane autopsies assessed the degree and type of fouling. Statistical models determined statistically relevant parameters for fouling types that were validated with membrane autopsies. Permeate flow rates decreased differently with biofouling vs inorganic fouling. Large increases in permeate conductivity were noted in membranes suffering from biofouling and not in inorganically fouled membranes. The concentration of cell clumps from detached biofilm in the retentate increased in membranes experiencing biofouling and no increase was seen for inorganically fouled membranes. A combination of these methods could be used to conveniently assess the types of fouling experienced by RO systems.  相似文献   

16.
Defining sustainability goals is a crucial but difficult task because it often involves the quantification of multiple interrelated and sometimes conflicting components. This complexity may be exacerbated by climate change, which will increase environmental vulnerability in aquaculture and potentially compromise the ability to meet the needs of a growing human population. Here, we developed an approach to inform sustainable aquaculture by quantifying spatio‐temporal shifts in critical trade‐offs between environmental costs and benefits using the time to reach the commercial size as a possible proxy of economic implications of aquaculture under climate change. Our results indicate that optimizing aquaculture practices by minimizing impact (this study considers as impact a benthic carbon deposition ≥ 1 g C m?2 day?1) will become increasingly difficult under climate change. Moreover, an increasing temperature will produce a poleward shift in sustainability trade‐offs. These findings suggest that future sustainable management strategies and plans will need to account for the effects of climate change across scales. Overall, our results highlight the importance of integrating environmental factors in order to sustainably manage critical natural resources under shifting climatic conditions.  相似文献   

17.
Climate change (CC) is driving modification of the chemical and physical properties of estuaries and oceans with profound consequences for species and ecosystems. Numerous studies investigate CC effects from species to ecosystem levels, but little is known of the impacts on biofilm communities and on bioactive molecules such as cues, adhesives and enzymes. CC is induced by anthropogenic activity increasing greenhouse emissions leading to rises in air and water temperatures, ocean acidification, sea level rise and changes in ocean gyres and rainfall patterns. These environmental changes are resulting in alterations within marine communities and changes in species ranges and composition. This review provides insights and synthesis of knowledge about the effect of elevated temperature and ocean acidification on microfouling communities and bioactive molecules. The existing studies suggest that CC will impact production of bioactive compounds as well as the growth and composition of biofouling communities. Undoubtedly, with CC fouling management will became an even greater challenge.  相似文献   

18.
Biofouling in marine aquaculture is one of the main barriers to efficient and sustainable production. Owing to the growth of aquaculture globally, it is pertinent to update previous reviews to inform management and guide future research. Here, the authors highlight recent research and developments on the impacts, prevention and control of biofouling in shellfish, finfish and seaweed aquaculture, and the significant gaps that still exist in aquaculturalists’ capacity to manage it. Antifouling methods are being explored and developed; these are centred on harnessing naturally occurring antifouling properties, culturing fouling-resistant genotypes, and improving farming strategies by adopting more sensitive and informative monitoring and modelling capabilities together with novel cleaning equipment. While no simple, quick-fix solutions to biofouling management in existing aquaculture industry situations have been developed, the expectation is that effective methods are likely to evolve as aquaculture develops into emerging culture scenarios, which will undoubtedly influence the path for future solutions.  相似文献   

19.
Nano-engineered superhydrophobic surfaces have been investigated for potential fouling resistance properties. Integrating hydrophobic materials with nanoscale roughness generates surfaces with superhydrophobicity that have water contact angles (θ) >150° and concomitant low hysteresis (<10°). Three superhydrophobic coatings (SHCs) differing in their chemical composition and architecture were tested against major fouling species (Amphora sp., Ulva rigida, Polysiphonia sphaerocarpa, Bugula neritina, Amphibalanus amphitrite) in settlement assays. The SHC which had nanoscale roughness alone (SHC 3) deterred the settlement of all the tested fouling organisms, compared to selective settlement on the SHCs with nano- and micro-scale architectures. The presence of air incursions or nanobubbles at the interface of the SHCs when immersed was characterized using small angle X-ray scattering, a technique sensitive to local changes in electron density contrast resulting from partial or complete wetting of a rough interface. The coating with broad spectrum antifouling properties (SHC 3) had a noticeably larger amount of unwetted interface when immersed, likely due to the comparatively high work of adhesion (60.77 mJ m?2 for SHC 3 compared to 5.78 mJ m?2 for the other two SHCs) required for creating solid/liquid interface from the solid/vapour interface. This is the first example of a non-toxic, fouling resistant surface against a broad spectrum of fouling organisms ranging from plant cells and non-motile spores, to complex invertebrate larvae with highly selective sensory mechanisms. The only physical property differentiating the immersed surfaces is the nano-architectured roughness which supports longer standing air incursions providing a novel non-toxic broad spectrum mechanism for the prevention of biofouling.  相似文献   

20.
Abstract

Data from short-term biofouling assays are frequently used to evaluate the performance of antifouling (AF) coatings. There are a large number of factors, however, that may influence community development. One such factor is colour. The hypothesis was that differences in colour may impact the short-term development of a biofouling community and therefore bias the results. An experiment was designed to investigate the effect of black and white substrata on settlement of fouling organisms in the field. Both Ulva sp. and Spirorbis sp. had significantly higher settlement on black surfaces. This result emphasises the importance of considering colour and other factors when undertaking short-term testing of AF coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号