首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years in silico protein structure prediction reached a level where fully automated servers can generate large pools of near‐native structures. However, the identification and further refinement of the best structures from the pool of models remain problematic. To address these issues, we have developed (i) a target‐specific selective refinement (SR) protocol; and (ii) molecular dynamics (MD) simulation based ranking (SMDR) method. In SR the all‐atom refinement of structures is accomplished via the Rosetta Relax protocol, subject to specific constraints determined by the size and complexity of the target. The best‐refined models are selected with SMDR by testing their relative stability against gradual heating through all‐atom MD simulations. Through extensive testing we have found that Mufold‐MD, our fully automated protein structure prediction server updated with the SR and SMDR modules consistently outperformed its previous versions. Proteins 2015; 83:1823–1835. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
Flohil JA  Vriend G  Berendsen HJ 《Proteins》2002,48(4):593-604
A method is presented to refine models built by homology by the use of restricted molecular dynamics (MD) techniques. The basic idea behind this method is the use of structure validation software to determine for each residue the likelihood that it is modeled correctly. This information is used to determine constraints and restraints in an MD simulation including explicit solvent molecules, which is used for model refinement. The procedure is based on the idea that residues that the validation software identifies as correctly positioned should be strongly constrained or restrained in the MD simulations, whereas residues that are likely to be positioned wrongly should move freely. Two different protocols are compared: one (applied to CASP3 target T58) using full structural constraints with separate optimization of each short fragment and the other (applied to T47) allowing some freedom using harmonic restraining potentials, with automatic optimization of the whole molecule. Structures along the MD trajectory that scored best in structural checks were selected for the construction of models that appeared to be successful in the CASP3 competition. Model refinement with MD in general leads to a model that is less like the experimental structure (Levitt et al. Nature Struct Biol 1999;6:108-111). Actually, refined T47 was slightly improved compared to the starting model; changes in model T58 led not to further enhancement. After the X-ray structure of the modeled proteins became known, the procedure was evaluated for two targets (T47 and the CASP4 target T111) by comparing a long simulation in water with the experimental target structures. It was found that structural improvements could be obtained on a nanosecond time scale by allowing appropriate freedom in the simulation. Structural checks applied to fast fluctuations do not appear to be informative for the correctness of the structure. However, both a simple hydrogen bond count and a simple compactness measure, if averaged over times of typically 300 ps, correlate well with structural correctness and we suggest that criteria based on these properties may be used in computational folding strategies.  相似文献   

3.
The determination of G protein-coupled receptor (GPCR) structures at atomic resolution has improved understanding of cellular signaling and will accelerate the development of new drug candidates. However, experimental structures still remain unavailable for a majority of the GPCR family. GPCR structures and their interactions with ligands can also be modelled computationally, but such predictions have limited accuracy. In this work, we explored if molecular dynamics (MD) simulations could be used to refine the accuracy of in silico models of receptor-ligand complexes that were submitted to a community-wide assessment of GPCR structure prediction (GPCR Dock). Two simulation protocols were used to refine 30 models of the D3 dopamine receptor (D3R) in complex with an antagonist. Close to 60 μs of simulation time was generated and the resulting MD refined models were compared to a D3R crystal structure. In the MD simulations, the receptor models generally drifted further away from the crystal structure conformation. However, MD refinement was able to improve the accuracy of the ligand binding mode. The best refinement protocol improved agreement with the experimentally observed ligand binding mode for a majority of the models. Receptor structures with improved virtual screening performance, which was assessed by molecular docking of ligands and decoys, could also be identified among the MD refined models. Application of weak restraints to the transmembrane helixes in the MD simulations further improved predictions of the ligand binding mode and second extracellular loop. These results provide guidelines for application of MD refinement in prediction of GPCR-ligand complexes and directions for further method development.  相似文献   

4.
One of critical difficulties of molecular dynamics (MD)?simulations in protein structure refinement is that the?physics-based energy landscape lacks?a middle-range funnel to guide nonnative conformations toward near-native states. We propose to use the target model as a probe to identify fragmental analogs from PDB. The distance maps are then used to reshape the MD energy funnel. The protocol was tested on 181 benchmarking and 26 CASP targets. It was found that structure models of correct folds with TM-score >0.5 can be often pulled closer to native with higher GDT-HA score, but improvement for the models of incorrect folds (TM-score <0.5) are much less pronounced. These data indicate that template-based fragmental distance maps essentially reshaped the MD energy landscape from golf-course-like to funnel-like ones in the successfully refined targets with a radius of TM-score ~0.5. These results demonstrate a new avenue to improve high-resolution structures by combining knowledge-based template information with physics-based MD simulations.  相似文献   

5.
Comparative or homology modeling of a target protein based on sequence similarity to a protein with known structure is widely used to provide structural models of proteins. Depending on the target‐template similarity these model structures may contain regions of limited structural accuracy. In principle, molecular dynamics (MD) simulations can be used to refine protein model structures and also to model loop regions that connect structurally conserved regions but it is limited by the currently accessible simulation time scales. A recently developed biasing potential replica exchange (BP‐REMD) method was used to refine loops and complete decoy protein structures at atomic resolution including explicit solvent. In standard REMD simulations several replicas of a system are run in parallel at different temperatures allowing exchanges at preset time intervals. In a BP‐REMD simulation replicas are controlled by various levels of a biasing potential to reduce the energy barriers associated with peptide backbone dihedral transitions. The method requires much fewer replicas for efficient sampling compared with T‐REMD. Application of the approach to several protein loops indicated improved conformational sampling of backbone dihedral angle of loop residues compared to conventional MD simulations. BP‐REMD refinement simulations on several test cases starting from decoy structures deviating significantly from the native structure resulted in final structures in much closer agreement with experiment compared to conventional MD simulations. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Raval A  Piana S  Eastwood MP  Dror RO  Shaw DE 《Proteins》2012,80(8):2071-2079
Accurate computational prediction of protein structure represents a longstanding challenge in molecular biology and structure-based drug design. Although homology modeling techniques are widely used to produce low-resolution models, refining these models to high resolution has proven difficult. With long enough simulations and sufficiently accurate force fields, molecular dynamics (MD) simulations should in principle allow such refinement, but efforts to refine homology models using MD have for the most part yielded disappointing results. It has thus far been unclear whether MD-based refinement is limited primarily by accessible simulation timescales, force field accuracy, or both. Here, we examine MD as a technique for homology model refinement using all-atom simulations, each at least 100 μs long-more than 100 times longer than previous refinement simulations-and a physics-based force field that was recently shown to successfully fold a structurally diverse set of fast-folding proteins. In MD simulations of 24 proteins chosen from the refinement category of recent Critical Assessment of Structure Prediction (CASP) experiments, we find that in most cases, simulations initiated from homology models drift away from the native structure. Comparison with simulations initiated from the native structure suggests that force field accuracy is the primary factor limiting MD-based refinement. This problem can be mitigated to some extent by restricting sampling to the neighborhood of the initial model, leading to structural improvement that, while limited, is roughly comparable to the leading alternative methods.  相似文献   

7.
Abstract

The 3D structure of neither Hoxc8 nor Hoxc8-DNA complex is known. The repressor protein Hoxc8 binds to the TAAT stretch of the promoter of the osteopontin gene and modulates its expression. Over expression of the osteopontin gene is related to diseases like osteoporosis, multiple sclerosis, cancer et cetera. In this paper we have proposed a 3D structure of Hoxc8-DNA complex obtained by Homology modeling and molecular dynamics (MD) simulation in explicit water. The crystal structure (9ant.pdb) of Antennapedia homeodomain in complex with its DNA sequence was chosen as the template based on (i) high sequence identity (85% for the protein and 60% for the DNA) and (ii) the presence of the TAAT stretch in interaction with the protein. The resulting model was refined by MD simulation for 2.0ns in explicit water. This refined model was then characterized in terms of the structural and the interactional features to improve our understanding of the mechanism of Hoxc8-DNA recognition. The interaction pattern shows that the residues Ile195, Gln198, and Asn199, and the bases S2-4TAATG8 are most important for recognition suggesting the stretch TAATG as the ‘true recognition element’ in the present case. A strong and long-lived water bridge connecting Gln198 and the base of S1-C7 complementary to S2-G8 was observed. Our predicted model of Hoxc8-DNA complex provides us with features that are consistent with the available experimental data on Hoxc8 and the general features of other homeodomain-DNA complexes. The predictions based on the model are also amenable to experimental verification.  相似文献   

8.
Misura KM  Baker D 《Proteins》2005,59(1):15-29
Achieving atomic level accuracy in de novo structure prediction presents a formidable challenge even in the context of protein models with correct topologies. High-resolution refinement is a fundamental test of force field accuracy and sampling methodology, and its limited success in both comparative modeling and de novo prediction contexts highlights the limitations of current approaches. We constructed four tests to identify bottlenecks in our current approach and to guide progress in this challenging area. The first three tests showed that idealized native structures are stable under our refinement simulation conditions and that the refinement protocol can significantly decrease the root mean square deviation (RMSD) of perturbed native structures. In the fourth test we applied the refinement protocol to de novo models and showed that accurate models could be identified based on their energies, and in several cases many of the buried side chains adopted native-like conformations. We also showed that the differences in backbone and side-chain conformations between the refined de novo models and the native structures are largely localized to loop regions and regions where the native structure has unusual features such as rare rotamers or atypical hydrogen bonding between beta-strands. The refined de novo models typically have higher energies than refined idealized native structures, indicating that sampling of local backbone conformations and side-chain packing arrangements in a condensed state is a primary obstacle.  相似文献   

9.
A recently suggested method for refinement of structural data obtained from two-dimensional nuclear magnetic resonance experiments using molecular dynamics (MD) is explored. In this method, the time-averaged values of the appropriate internal co-ordinates of the molecule, calculated from the MD trajectory, are driven by restraints towards the experimental target values. This contrasts with most refinement procedures currently in use, where restraints are applied based on the instantaneous values of the appropriate co-ordinates. Both refinement methods are applied to the EcoRI restriction site DNA hexamer d(GAATTC)2, using target nuclear Overhauser enhancement distances derived from a one nanosecond unrestrained MD simulation of this structure. The resulting refined structures are compared to the results of the unrestrained MD trajectory, which serves as our "experimental" data. We show that although both methods can yield an average structure with the correct gross morphology, the new method allows both a much more realistic picture of inherent flexibility, and reproduces fine conformational detail better, such as sequence dependency. We also analyze the very long MD trajectory generated here (longer than any previously reported for a DNA oligomer), and find that significantly shorter simulations, typical of those frequently performed, may not yield acceptably reliable values for certain structural parameters.  相似文献   

10.
Carugo O 《Protein engineering》1999,12(12):1021-1024
An empirical relationship between occupancy and the atomic displacement parameter of water molecules in protein crystal structures has been found by comparing a set of well refined sperm whale myoglobin crystal structures. The relationship agrees with a series of independent structural features whose impact on water occupancy can easily be predicted as well as with other known data and is independent of the protein fold. The estimation of the water occupancy in protein crystal structures may help in understanding the physico-chemical properties of the protein-solvent interface and can allow the monitoring of the accuracy of the protein crystal structure refinement.  相似文献   

11.
The structure of Chromatium high potential iron protein (HiPIP) has been refined by semiautomatic Fo-Fc (observed minus calculated structure amplitude Fourier methods to a convential R index, R=sum of the absolute value of Fo-Fc divided by the sum of Fo, of 24.7% for a model in which bond distances and angles are constrained to standard values. Bond length and angle constraints were applied only intermittenly during the computations. At a late stage of the refinement, atomic parameters for only the Fe4S4 cluster plus the 4 associated cystein S-gamma atoms were adjusted by least squares methods and kept fixed during the rest of the refinement. The refined model consists of 625 of the 632 nonhydrogen atoms in the protein plus 75 water molecules. Seven side chain atoms could not be located in the final electron density map. A computer program rather than visual inspection was used wherever possible in the refinement: for locating water molecules, for removing water molecules that too closely approach other atoms, for deleting atoms that lay in regions of low electron density, and for evaluating the progress of refinement. Fo-Fc Fourier refinement is sufficiently economical to be applied routinely in protein crystal structure determinations. The complete HiPIP refinement required approximately 12 hours of CDC 3600 computer time and cost less than $3000 starting from a "trial structure," based upon multipe isomorphoous replacement phases, which gave an R of 43%...  相似文献   

12.
Molecular dynamics simulated annealing (SA-MD) simulations are frequently used for refinement and optimization of peptide and protein structures. Depending on the simulation conditions and simulation length SA-MD simulations can be trapped in locally stable conformations far from the global optimum. As an alternative replica exchange molecular dynamics (RexMD) simulations can be used which allow exchanges between high and low simulation temperatures at all stages of the simulation. A significant drawback of RexMD simulations is, however, the rapid increase of the replica number with increasing system size to cover a desired temperature range. A combined SA-MD and RexMD approach termed SA-RexMD is suggested that employs a small number of replicas (4) and starts initially with a set of high simulation temperatures followed by gradual cooling of the set of temperatures until a target temperature has been reached. The protocol has been applied for the folding of several peptide systems and for the refinement of protein model structures. In all the cases, the SA-RexMD method turned out to be significantly more efficient in reaching low energy structures and also structures close to experiment compared to continuous MD simulations at the target temperature and to SA-MD simulations at the same computational demand. The approach is well suited for applications in structure refinement and for systematic force field improvement.  相似文献   

13.
We present a homology based model of the ligand binding domain (LBD) of the homopentameric alpha1 glycine receptor (GlyR). The model is based on multiple sequence alignment with other members of the nicotinicoid ligand gated ion channel superfamily and two homologous acetylcholine binding proteins (AChBP) from the freshwater (Lymnaea stagnalis) and saltwater (Aplysia californica) snails with known high resolution structure. Using two template proteins with known structure to model three dimensional structure of a target protein is especially advantageous for sequences with low homology as in the case presented in this paper. The final model was cross-validated by critical evaluation of experimental and published mutagenesis, functional and other biochemical studies. In addition, a complex structure with strychnine antagonist in the putative binding site is proposed based on docking simulation using Autodock program. Molecular dynamics (MD) simulations with simulated annealing protocol are reported on the proposed LBD of GlyR, which is stable in 5 ns simulation in water, as well as for a deformed LBD structure modeled on the corresponding domain determined in low-resolution cryomicroscopy structure of the alpha subunit of the full-length acetylcholine receptor (AChR). Our simulations demonstrate that the beta-sandwich central core of the protein monomer is fairly rigid in the simulations and resistant to deformations in water.  相似文献   

14.
The 3D structure of neither Hoxc8 nor Hoxc8-DNA complex is known. The repressor protein Hoxc8 binds to the TAAT stretch of the promoter of the osteopontin gene and modulates its expression. Over expression of the osteopontin gene is related to diseases like osteoporosis, multiple sclerosis, cancer et cetera. In this paper we have proposed a 3D structure of Hoxc8-DNA complex obtained by Homology modeling and molecular dynamics (MD) simulation in explicit water. The crystal structure (9ant.pdb) of Antennapedia homeodomain in complex with its DNA sequence was chosen as the template based on (i) high sequence identity (85% for the protein and 60% for the DNA) and (ii) the presence of the TAAT stretch in interaction with the protein. The resulting model was refined by MD simulation for 2.0ns in explicit water. This refined model was then characterized in terms of the structural and the interactional features to improve our understanding of the mechanism of Hoxc8-DNA recognition. The interaction pattern shows that the residues Ile(195), Gln(198), and Asn(199), and the bases S2-(4)TAATG(8) are most important for recognition suggesting the stretch TAATG as the "true recognition element" in the present case. A strong and long-lived water bridge connecting Gln(198) and the base of S1-C(7) complementary to S2-G(8) was observed. Our predicted model of Hoxc8-DNA complex provides us with features that are consistent with the available experimental data on Hoxc8 and the general features of other homeodomain-DNA complexes. The predictions based on the model are also amenable to experimental verification.  相似文献   

15.
Abstract

Plant disease resistance (R) genes, the key players of innate immunity system in plants encode ‘R’ proteins. ‘R’ protein recognizes product of avirulance gene from the pathogen and activate downstream signaling responses leading to disease resistance. No three dimensional (3D) structural information of any ‘R’ proteins is available as yet. We have reported a ‘R’ gene homolog, the 'VMYR1′, encoding ‘R’ protein in Vigna mungo. Here, we describe the homology modeling of the 'VMYR1′ protein. The model was created by using the 3D structure of an ATP-binding cassette transporter protein from Vibrio cholerae as a template. The strategy for homology modeling was based on the high structural conservation in the superfamily of P-loop containing nucleoside triphosphate hydrolase in which target and template proteins belong. This is the first report of theoretical model structure of any ‘R’ proteins.  相似文献   

16.
Aeromonas hydrophila has been implicated in extra-intestinal infection and diarrhoea in humans. Targetting unique effectors of bacterial pathogens is considered a powerful strategy for drug design against bacterial variations to drug resistance. The two-component bacterial system involving sensor histidine kinase (SHK) and its response regulators is considered a lucrative target for drug design. This is the first report describing a three-dimensional (3D) structure for SHK of A. hydrophila. The model was constructed by homology modelling using the X-ray structure of PleD—a response regulator—in conjunction with cdiGMP (PDB code 1W25) and HemAT sensor domain (PDB code 1OR4)—a globin coupled sensor. A combination of homology modelling methodology and molecular dynamics (MD) simulations was applied to obtain a reasonable structure to understand the dynamic behaviour of SHK. Homology modelling was performed using MODELLER9v2 software. The structure was relaxed to eliminate bad atomic contacts. The final model obtained by molecular mechanics and dynamics methods was assessed using PROCHECK and VERIFY 3D graph, which confirmed that the final refined model is reliable. Until complete biochemical and structural data of SHK are determined by experimental means, this model can serve as a valuable reference for characterising the protein and could be explored for drug targetting by design of suitable inhibitors.  相似文献   

17.
自从六十年代初期应用X射线晶体衍射方法测定第一个蛋白质(肌红蛋白)的三维结构以来,我们关于蛋白质三维结构的知识已有了相当的积累.截止86年7月的统计,已有286个蛋白质分子的原子坐标存入国际蛋白质数据库.以此为基础,一些重要生命活动的结构机理已经在三维水平上得到精细阐明(参见),一个由分子生物学和X射线晶体学结合形成的新领域——蛋白质晶体学,应运而生.二十多年来,这一领域的发展已经历了二个阶段.第一阶段大体从六十年代初到七十年代中期,在这期间,分析方法和技术从突破发展到成熟和实用,并有近40个蛋白质结构测定出来,使我们获得了蛋白质结构知识的面面观.  相似文献   

18.
Electron paramagnetic resonance (EPR) spectroscopy using site-directed spin-labeling is an appropriate technique to analyze the structure and dynamics of flexible protein regions as well as protein-protein interactions under native conditions. The analysis of a set of protein mutants with consecutive spin-label positions leads to the identification of secondary and tertiary structure elements. In the first place, continuous-wave EPR spectra reflect the motional freedom of the spin-label specifically linked to a desired site within the protein. EPR spectra calculations based on molecular dynamics (MD) and stochastic dynamics simulations facilitate verification or refinement of predicted computer-aided models of local protein conformations. The presented spectra simulation algorithm implies a specialized in vacuo MD simulation at 600 K with additional restrictions to sample the entire accessible space of the bound spin-label without large temporal effort. It is shown that the distribution of spin-label orientations obtained from such MD simulations at 600 K agrees well with the extrapolated motion behavior during a long timescale MD at 300 K with explicit water. The following potential-dependent stochastic dynamics simulation combines the MD data about the site-specific orientation probabilities of the spin-label with a realistic rotational diffusion coefficient yielding a set of trajectories, each more than 700 ns long, essential to calculate the EPR spectrum. Analyses of a structural model of the loop between helices E and F of bacteriorhodopsin are illustrated to demonstrate the applicability and potentials of the reported simulation approach. Furthermore, effects on the motional freedom of bound spin-labels induced by solubilization of bacteriorhodopsin with Triton X-100 are examined.  相似文献   

19.
Comparative modelling is a powerful method that easily predicts a considerably accurate structure of a protein by using a template structure having a similar amino-acid sequence to the target protein. However, in the region where the amino-acid sequence is different between the target and the template, the predicted structure remains unreliable. In such a case, the model has to be refined. In the present study, we explored the possibility of a molecular dynamics-based method, using the human SAP Src Homology 2 (SH2) domain as the modelling target. The multicanonical method was used to alleviate the multiple-minima problem and the generalised Born/surface area model was used to reduce the computational cost. In addition, position restraints were imposed on the atoms in the reliable regions to avoid unnecessary conformational sampling. We analyzed the conformational distribution of the ligand-recognition loop of the domain and found that the most populated conformational clusters in the ensemble of the model agreed well with one of the two major clusters in the ensemble of the reference simulation starting from the crystal structure. This demonstrates that the current refinement method can significantly improve the accuracy of an unreliable region in a comparative model.  相似文献   

20.
刘志刚  邓贝  杨波  胡征 《生物信息学》2013,11(2):130-135
运用同源模建的方法构建了pACY1三维结构模型,并在能量最小化后对模型进行分子动力学模拟和结构合理性评估。同源模建生成了50个原始模型,经过PROCHECK评测后,筛选出模型A、B进行能量最小化,并得到模型A1、B1。分子动力学模拟结果表明模型B1二聚体结构较稳定。PROCHECK、ProSa以及WHATIF检测结果验证了模型B1属于合理性结构。得到的猪氨基酰化酶Ⅰ(pACY1)的三维结构,为研究其结构与功能关系打下基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号