首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 978 毫秒
1.
Microbiologically influenced corrosion (MIC) of mild steel in seawater is an expensive and enduring problem. Little attention has been paid to the role of neutrophilic, lithotrophic, iron-oxidizing bacteria (FeOB) in MIC. The goal of this study was to determine if marine FeOB related to Mariprofundus are involved in this process. To examine this, field incubations and laboratory microcosm experiments were conducted. Mild steel samples incubated in nearshore environments were colonized by marine FeOB, as evidenced by the presence of helical iron-encrusted stalks diagnostic of the FeOB Mariprofundus ferrooxydans, a member of the candidate class "Zetaproteobacteria." Furthermore, Mariprofundus-like cells were enriched from MIC biofilms. The presence of Zetaproteobacteria was confirmed using a Zetaproteobacteria-specific small-subunit (SSU) rRNA gene primer set to amplify sequences related to M. ferrooxydans from both enrichments and in situ samples of MIC biofilms. Temporal in situ incubation studies showed a qualitative increase in stalk distribution on mild steel, suggesting progressive colonization by stalk-forming FeOB. We also isolated a novel FeOB, designated Mariprofundus sp. strain GSB2, from an iron oxide mat in a salt marsh. Strain GSB2 enhanced uniform corrosion from mild steel in laboratory microcosm experiments conducted over 4 days. Iron concentrations (including precipitates) in the medium were used as a measure of corrosion. The corrosion in biotic samples (7.4 ± 0.1 mM) was significantly higher than that in abiotic controls (5.0 ± 0.1 mM). These results have important implications for the role of FeOB in corrosion of steel in nearshore and estuarine environments. In addition, this work shows that the global distribution of Zetaproteobacteria is far greater than previously thought.  相似文献   

2.
Surfaces of carbon steel (CS) exposed to mixed cultures of iron-oxidizing bacteria (FeOB) and dissimilatory iron-reducing bacteria (FeRB) in seawater media under aerobic conditions were rougher than surfaces of CS exposed to pure cultures of either type of microorganism. The roughened surface, demonstrated by profilometry, is an indication of loss of metal from the surface. In the presence of CS, aerobically grown FeOB produced tight, twisted helical stalks encrusted with iron oxides. When CS was exposed anaerobically in the presence of FeRB, some surface oxides were removed. However, when the same FeOB and FeRB were grown together in an aerobic medium, FeOB stalks were less encrusted with iron oxides and appeared less tightly coiled. These observations suggest that iron oxides on the stalks were reduced and solubilized by the FeRB. Roughened surfaces of CS and denuded stalks were replicated with culture combinations of different species of FeOB and FeRB under three experimental conditions. Measurements of electrochemical polarization resistance established different rates of corrosion of CS in aerobic and anaerobic media, but could not differentiate rate differences between sterile controls and inoculated exposures for a given bulk concentration of dissolved oxygen. Similarly, total iron in the electrolyte could not be used to differentiate treatments. The experiments demonstrate the potential for iron cycling (oxidation and reduction) on corroding CS in aerobic seawater media.  相似文献   

3.
We report the isolation and physiological characterization of novel, psychrophilic, iron-oxidizing bacteria (FeOB) from low-temperature weathering habitats in the vicinity of the Juan de Fuca deep-sea hydrothermal area. The FeOB were cultured from the surfaces of weathered rock and metalliferous sediments. They are capable of growth on a variety of natural and synthetic solid rock and mineral substrates, such as pyrite (FeS2), basalt glass (~10 wt% FeO), and siderite (FeCO3), as their sole energy source, as well as numerous aqueous Fe substrates. Growth temperature characteristics correspond to the in situ environmental conditions of sample origin; the FeOB grow optimally at 3 to 10°C and at generation times ranging from 57 to 74 h. They are obligate chemolithoautotrophs and grow optimally under microaerobic conditions in the presence of an oxygen gradient or anaerobically in the presence of nitrate. None of the strains are capable of using any organic or alternate inorganic substrates tested. The bacteria are phylogenetically diverse and have no close Fe-oxidizing or autotrophic relatives represented in pure culture. One group of isolates are γ-Proteobacteria most closely related to the heterotrophic bacterium Marinobacter aquaeolei (87 to 94% sequence similarity). A second group of isolates are α-Proteobacteria most closely related to the deep-sea heterotrophic bacterium Hyphomonas jannaschiana (81 to 89% sequence similarity). This study provides further evidence for the evolutionarily widespread capacity for Fe oxidation among bacteria and suggests that FeOB may play an unrecognized geomicrobiological role in rock weathering in the deep sea.  相似文献   

4.
Iron-oxidizing bacteria (FeOB) refers to a group of bacteria with the ability to exchange and accumulate divalent iron dissolved in water as trivalent iron inside and outside the bacterial cell. Most FeOB belong the largest bacterial phylum, Proteobacteria. Within this phylum, FeOB with varying physiology with regards to their response to oxygen (obligate aerobes, facultative and obligate anaerobes) and pH optimum for proliferation (neutrophiles, moderate and extreme acidophiles) can be found. Although FeOB have been reported from a wide variety of environments, most of them have not been isolated and their biochemical characteristics remain largely unknown. This is especially true for those living in the marine realm, where the properties of FeOB was not known until the isolation of the Zetaproteobacteria Mariprofundus ferrooxydans, first reported in 2007. Since the proposal of Zetaproteobacteria by Emerson et al., the detection and isolation of those microorganisms from the marine environment has greatly escalated. Furthermore, FeOB have also recently been reported from works on ocean drilling and metal corrosion. This review aims to summarize the current state of phylogenetic and physiological diversity in marine FeOB, the significance of their roles in their environments (on both global and local scales), as well as their growing importance and applications in the industry.  相似文献   

5.
Iron-rich flocs often occur where anoxic water containing ferrous iron encounters oxygenated environments. Culture-independent molecular analyses have revealed the presence of 16S rRNA gene sequences related to diverse bacteria, including autotrophic iron oxidizers and methanotrophs in iron-rich flocs; however, the metabolic functions of the microbial communities remain poorly characterized, particularly regarding carbon cycling. In the present study, we cultivated iron-oxidizing bacteria (FeOB) and performed clone library analyses of functional genes related to carbon fixation and methane oxidization (cbbM and pmoA, respectively), in addition to bacterial and archaeal 16S rRNA genes, in freshwater iron-rich flocs at groundwater discharge points. The analyses of 16S rRNA, cbbM, and pmoA genes strongly suggested the coexistence of autotrophic iron oxidizers and methanotrophs in the flocs. Furthermore, a novel stalk-forming microaerophilic FeOB, strain OYT1, was isolated and characterized phylogenetically and physiologically. The 16S rRNA and cbbM gene sequences of OYT1 are related to those of other microaerophilic FeOB in the family Gallionellaceae, of the Betaproteobacteria, isolated from freshwater environments at circumneutral pH. The physiological characteristics of OYT1 will help elucidate the ecophysiology of microaerophilic FeOB. Overall, this study demonstrates functional roles of microorganisms in iron flocs, suggesting several possible linkages between Fe and C cycling.  相似文献   

6.
Abundance and structure of the communities of neutrophilic lithotrophic iron-oxidizing bacteria (FeOB) inhabiting four low-mineralized ferruginous springs of the Marcial Waters Resort (South Karelia, Russia) and the brackish chalybeate spring of the Staraya Russa Resort (Novgorod region, Russia), were investigated, as well as the physicochemical conditions of these environments. In fresh iron-containing precipitates collected near the spring outlets and within the spring-discharge areas, as well as along the spring watercourses, the numbers of unicellular FeOB enumerated on nutrient media ranged from 105 to 107 cells per 1 mL of sediments irrespective of the initial Fe(II) concentration (11–126 mg L−1). In the spring waters and along the spring watercourses inhabited by iron-oxidizing bacteria, the concentration of dissolved oxygen did not exceed 0.05–0.1 mg L−1. Unicellular FeOB were predominant in three springs, while in the springs with relatively low Fe(II) concentrations (11–22 mg L−1), various morphological forms of Gallionella and uncultured forms of the iron-oxidizing bacterium Toxothrix trichogenes prevailed. In the model experiments with the water samples collected in the ferruginous springs and bogs under controlled conditions, the fractionation of stable iron isotopes and the rate of iron oxidation were found to depend on the oxygen regime and, to a lesser extent, on the initial Fe(II) concentration. The maximum enrichment of the iron oxides formed during the simulation experiments with the light 54Fe isotope was observed during bacterial oxidation under microaerobic conditions at O2 concentrations of 0.1–0.3 mg L−1 and in the cultures of iron-oxidizing bacteria. During the abiogenic oxidation of Fe(II), the extent of stable isotope fractionation was 1.5–2 times lower. Enrichment of Fe(III) oxides with the light 54Fe isotope (3- to 5-fold) was considerably lower at high rates of both the biogenic and abiogenic processes of iron oxidation under aerobic conditions; however, it was more intense during the bacterial processes. Comparison of the rates of enrichment of Fe(III) oxides with the light isotope during the model experiments with pure and enrichment cultures of iron-oxidizing bacteria from the sediments of ferruginous springs and bogs revealed that the biogenic factor plays a key role in the oxidation processes of the iron cycle, as well as in the differentiation of the composition of stable iron isotopes in the studied ecosystems.  相似文献   

7.
We report the isolation and physiological characterization of novel, psychrophilic, iron-oxidizing bacteria (FeOB) from low-temperature weathering habitats in the vicinity of the Juan de Fuca deep-sea hydrothermal area. The FeOB were cultured from the surfaces of weathered rock and metalliferous sediments. They are capable of growth on a variety of natural and synthetic solid rock and mineral substrates, such as pyrite (FeS(2)), basalt glass ( approximately 10 wt% FeO), and siderite (FeCO(3)), as their sole energy source, as well as numerous aqueous Fe substrates. Growth temperature characteristics correspond to the in situ environmental conditions of sample origin; the FeOB grow optimally at 3 to 10 degrees C and at generation times ranging from 57 to 74 h. They are obligate chemolithoautotrophs and grow optimally under microaerobic conditions in the presence of an oxygen gradient or anaerobically in the presence of nitrate. None of the strains are capable of using any organic or alternate inorganic substrates tested. The bacteria are phylogenetically diverse and have no close Fe-oxidizing or autotrophic relatives represented in pure culture. One group of isolates are gamma-Proteobacteria most closely related to the heterotrophic bacterium Marinobacter aquaeolei (87 to 94% sequence similarity). A second group of isolates are alpha-Proteobacteria most closely related to the deep-sea heterotrophic bacterium Hyphomonas jannaschiana (81 to 89% sequence similarity). This study provides further evidence for the evolutionarily widespread capacity for Fe oxidation among bacteria and suggests that FeOB may play an unrecognized geomicrobiological role in rock weathering in the deep sea.  相似文献   

8.
The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long −149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides.  相似文献   

9.
Carbon steels are widely used in the oil and gas industry from downhole tubing to transport trunk lines. Microbes form biofilms, some of which cause the so-called microbiologically influenced corrosion (MIC) of carbon steels. MIC by sulfate reducing bacteria (SRB) is often a leading cause in MIC failures. Electrogenic SRB sessile cells harvest extracellular electrons from elemental iron oxidation for energy production in their metabolism. A previous study suggested that electron mediators riboflavin and flavin adenine dinucleotide (FAD) both accelerated the MIC of 304 stainless steel by the Desulfovibrio vulgaris biofilm that is a corrosive SRB biofilm. Compared with stainless steels, carbon steels are usually far more prone to SRB attacks because SRB biofilms form much denser biofilms on carbon steel surfaces with a sessile cell density that is two orders of magnitude higher. In this work, C1018 carbon steel coupons were used in tests of MIC by D. vulgaris with and without an electron mediator. Experimental weight loss and pit depth data conclusively confirmed that both riboflavin and FAD were able to accelerate D. vulgaris attack against the carbon steel considerably. It has important implications in MIC failure analysis and MIC mitigation in the oil and gas industry.  相似文献   

10.
Microbial iron oxidation is an integral part of the iron redox cycle in wetlands. Nonetheless, relatively little is known about the composition and ecology of iron-oxidizing communities in the soils and sediments of wetlands. In this study, sediment cores were collected across a freshwater tidal marsh in order to characterize the iron-oxidizing bacteria (FeOB) and to link their distributions to the geochemical properties of the sediments. We applied recently designed 16S rRNA primers targeting Gallionella-related FeOB by using a nested PCR-denaturing gradient gel electrophoresis (DGGE) approach combined with a novel quantitative PCR (qPCR) assay. Gallionella-related FeOB were detected in most of the samples. The diversity and abundance of the putative FeOB were generally higher in the upper 5 to 12 cm of sediment than in deeper sediment and higher in samples collected in April than in those collected in July and October. Oxygen supply by macrofauna appears to be a major force in controlling the spatial and temporal variations in FeOB communities. The higher abundance of Gallionella-related FeOB in April coincided with elevated concentrations of extractable Fe(III) in the sediments. Despite this coincidence, the distributions of FeOB did not exhibit a simple relationship to the redox zonation inferred from the geochemical depth profiles.  相似文献   

11.
In this work, two novel iron oxidizing bacteria (IOB), namely Gordonia sp. MZ-89 and Enterobacter sp. M01101, were isolated from sewage treatment plants and identified by biochemical and molecular methods. Then, microbially influenced corrosion (MIC) of carbon steel in the presence of these bacteria was investigated. The electrochemical techniques such as potentiodynamic polarization measurements and electrochemical impedance spectroscopy (EIS) were used to measure the corrosion rate and observe the corrosion mechanism. The results showed that the existence of these microorganisms decreased the corrosion potential and enhanced the corrosion rate. Scanning electron microscopy (SEM) images revealed the ground boundary attacks and pitting on carbon steel samples in the presence of these bacteria after polarization. Corrosion scales were identified with X-ray diffraction (XRD). It was demonstrated that these bacteria can greatly affect the crystalline phase of corrosion products that also confirmed by SEM results. It was inferred that these bacteria were responsible for the corrosion of carbon steel, especially in the form of localized corrosion.  相似文献   

12.
Microaerophilic, neutrophilic, iron-oxidizing bacteria (FeOB) grow via the oxidation of reduced Fe(II) at or near neutral pH, in the presence of oxygen, making them relevant in numerous environments with elevated Fe(II) concentrations. However, the biochemical mechanisms for Fe(II) oxidation by these neutrophilic FeOB are unknown, and genetic markers for this process are unavailable. In the ocean, microaerophilic microorganisms in the genus Mariprofundus of the class Zetaproteobacteria are the only organisms known to chemolithoautotrophically oxidize Fe and concurrently biomineralize it in the form of twisted stalks of iron oxyhydroxides. The aim of this study was to identify highly expressed proteins associated with the electron transport chain of microaerophilic, neutrophilic FeOB. To this end, Mariprofundus ferrooxydans PV-1 was cultivated, and its proteins were extracted, assayed for redox activity, and analyzed via liquid chromatography-tandem mass spectrometry for identification of peptides. The results indicate that a cytochrome c4, cbb3-type cytochrome oxidase subunits, and an outer membrane cytochrome c were among the most highly expressed proteins and suggest an involvement in the process of aerobic, neutrophilic bacterial Fe oxidation. Proteins associated with alternative complex III, phosphate transport, carbon fixation, and biofilm formation were abundant, consistent with the lifestyle of Mariprofundus.  相似文献   

13.
Aims: To examine the activity of bacteria involved in cathodic depolarization and surface corrosion on stainless steel in an in situ model system. Methods and Results: The microautoradiographic technique (MAR) was used to evaluate the activity of bacterial populations on stainless steel surfaces with a single cell resolution. Anaerobic uptake and fixation of 14C‐labelled bicarbonate occurred within corrosion sites in the absence of atmospheric hydrogen or other external electron donors, whereas it was taken up and fixed by bacteria at all other stainless steel surfaces in the presence of atmospheric hydrogen. This indicates that the bacteria utilized electrons originating from the corrosion sites due to the ongoing corrosion (cathodic depolarization). Conclusion: Under in situ conditions, bacteria were fixating 14C‐labelled bicarbonate at corrosion sites in the absence of atmospheric hydrogen. This indicates that electrons transferred to the bacteria provided energy for bicarbonate fixation due to cathodic depolarization. Significance and Impact of the Study: Application of the MAR method showed ongoing biocorrosion in the applied in situ model system and allowed in situ examination of bacterial activity on a single cell level directly on a metal surface providing information about potential corrosion mechanisms. Furthermore, application of fluorescence in situ hybridization in combination with MAR allows for identification of the active bacteria.  相似文献   

14.

In the wetland rhizosphere, high densities of lithotrophic Fe(II)-oxidizing bacteria (FeOB) and a favorable environment (i.e., high Fe(II) availability and microaerobic conditions) suggest that these organisms are actively contributing to the formation of Fe plaque on plant roots. We manipulated the presence/absence of an Fe(II)-oxidizing bacterium (Sideroxydans paludicola, strain BrT) in axenic hydroponic microcosms containing the roots of intact Juncus effusus (soft rush) plants to determine if FeOB affected total rates of rhizosphere Fe(II) oxidation and Fe plaque accumulation. Our experimental data highlight the importance of both FeOB and plants in influencing short-term rates of rhizosphere Fe oxidation. Over time scales ca. 1 wk, the FeOB increased Fe(II) oxidation rates by 1.3 to 1.7 times relative to FeOB-free microcosms. Across multiple experimental trials, Fe(II) oxidation rates were significantly correlated with root biomass, reflecting the importance of radial O 2 loss in supporting rhizosphere Fe(II) oxidation. Rates of root Fe(III) plaque accumulation (time scales: 3 to 6 wk) were ~ 70 to 83% lower than expected based on the short-term Fe(II) oxidation rates and were unaffected by the presence/absence of FeOB. Decreasing rates of Fe(II) oxidation and Fe(III) plaque accumulation with increasing time scales indicate changes in rates of Fe(II) diffusion and radial O 2 loss, shifts in the location of Fe oxide accumulation, or temporal changes in the microbial community within the microcosms. The microcosms used herein replicated many of the environmental characteristics of wetland systems and allowed us to demonstrate that FeOB can stimulate rates of Fe(II) oxidation in the wetland rhizosphere, a finding that has implications for the biogeochemical cycling of carbon, metals, and nutrients in wetland ecosystems.  相似文献   

15.
G. Saini  C. S. Chan 《Geobiology》2013,11(2):191-200
Microbial survival in mineralizing environments depends on the ability to evade surface encrustation by minerals, which could obstruct nutrient uptake and waste output. Some organisms localize mineral precipitation away from the cell; however, cell surface properties – charge and hydrophobicity – must also play a role in preventing surface mineralization. This is especially relevant for iron‐oxidizing bacteria (FeOB), which face an encrustation threat from both biotic and abiotic mineralization. We used electron microscopy and surface characterization techniques to study the surfaces of two stalk‐forming neutrophilic FeOB: the marine Zetaproteobacterium Mariprofundus ferrooxydans PV‐1 and the recently isolated freshwater Betaproteobacterium Gallionellales strain R‐1. Both organisms lack detectable iron on cell surfaces. Live and azide‐inhibited M. ferrooxydans PV‐1 cells had small negative zeta potentials (?0.34 to ?2.73 mV), over the pH range 4.2–9.4; Gallionellales strain R‐1 cells exhibited an even smaller zeta potential (?0.10 to ?0.19 mV) over pH 4.2–8.8. Cells have hydrophilic surfaces, according to water contact angle measurements and microbial adhesion to hydrocarbons tests. Thermodynamic and extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) calculations showed that as low charge causes low electrostatic attraction, hydrophilic repulsion dominates cell–mineral interactions. Therefore, we conclude that surface properties help enable these FeOB to survive in highly mineralizing environments. Given both mineral‐repelling surface properties and the ability to sequester Fe(III) biominerals in an organomineral stalk, these two FeOB have a well‐coordinated system to localize both biotic and abiotic mineral distribution.  相似文献   

16.
Abstract

Iron-oxidizing bacteria (FeOB) can successively populate low-nutrient aquatic environments and adapt to a broad concentration range of alkaline earth metals, with optimum conditions widely differing from one species to another. For the most abundant known FeOB genera Gallionella and Leptothrix, there is a lack of reports on substrate affinity for calcium and magnesium and necromass assimilability. Single nutrient and combined affinity for Ca and Mg of a wild Gallionella ferruginea isolate and a Leptothrix cholodnii strain as well as growth of heterotrophic L. cholodnii on necromass of autotrophic G. ferruginea were determined by cell density measurements. G. ferruginea responds with Monod-shaped preferences and thus favors waters rich in Ca and Mg. Maximum growth occurred at Ca concentrations five times above those of commonly used modified mineral Wolfe’s medium. L. cholodnii showed a Monod-shaped preference in the low concentration range and an inhibitory response to increasing hardness: concentrations >2?mM Ca or >0.6?mM Mg allow only 50 or 75%, respectively, of maximum specific cell densities. Considering the concentration range with a Monod-shaped response (for L. cholodnii only lower concentration range), both FeOB show a type I independent colimitation for Ca and Mg with lower requirements of Mg than Ca. On a C-limited medium containing G. ferruginea necromass as the only C-source, L. cholodnii cell counts were higher by two orders of magnitude compared to pyruvate medium. Thus, the necromass may serve as a primary C-source for heterotrophic FeOB and other heterotrophic bacteria with technical and economical relevance.  相似文献   

17.

Bacterial adhesion on stainless steel may cause problems such as microbially induced corrosion or represent a chronic source of microbial contamination. The investigation focussed on how the extent and patterns of four bacterial species comprising three different phyla and a broad variety of physicochemical characteristics was influenced by the surface topography of AISI 304 stainless steel. Five types of surface finish corresponding to roughness values R a between 0.03 and 0.89 w m were produced. Adhesion of all four bacteria was minimal at R a =0.16 w m, whereas smoother and rougher surfaces gave rise to more adhesion. This surface exhibited parallel scratches of 0.7 w m, in which a high proportion of bacteria of three of the strains aligned. Reduced overall adhesion was attributed to unfavorable interactions between this surface and bacteria oriented other than parallel to the scratches. Interaction energy calculations and considerations of micro-geometry confirmed this mechanism. Rougher surfaces exhibiting wider scratches allowed a higher fraction of bacteria to adhere in other orientations, whereas the orientation of cells adhered to the smoothest surface was completely random.  相似文献   

18.
Microbially induced corrosion (MIC) is a complex problem that affects various industries. Several techniques have been developed to monitor corrosion and elucidate corrosion mechanisms, including microbiological processes that induce metal deterioration. We used zero resistance ammetry (ZRA) in a split chamber configuration to evaluate the effects of the facultatively anaerobic Fe(III) reducing bacterium Shewanella oneidensis MR-1 on the corrosion of UNS G10180 carbon steel. We show that activities of S. oneidensis inhibit corrosion of steel with which that organism has direct contact. However, when a carbon steel coupon in contact with S. oneidensis was electrically connected to a second coupon that was free of biofilm (in separate chambers of the split chamber assembly), ZRA-based measurements indicated that current moved from the S. oneidensis-containing chamber to the cell-free chamber. This electron transfer enhanced the O2 reduction reaction on the coupon deployed in the cell free chamber, and consequently, enhanced oxidation and corrosion of that electrode. Our results illustrate a novel mechanism for MIC in cases where metal surfaces are heterogeneously covered by biofilms.  相似文献   

19.
Iron deposits (Fe plaque) on wetland plant roots contain abundant microbial populations, including Fe(II)-oxidizing bacteria (FeOB) that have not been cultured previously. In this study, 4 strains of Fe plaque-associated FeOB were isolated from 4 species of wetland plants. All 4 isolates grew in tight association with Fe-oxides, but did not form any identifiable Fe-oxide structures. All strains were obligate lithotrophic Fe(II)-oxidizers that were microaerobic, and were unable to use other inorganic or organic energy sources. One strain, BrT, was shown to fix 14 CO 2 at a rate consistent with its requirement for total cell carbon. The doubling times for the strains varied between 9.5 and 15.8 hours. The fatty acid methyl ester (FAME) profiles of 2 strains, BrT and CCJ, revealed that 16:0, 15:1 isoG, and 14:0 were dominant fatty acids. Phylogenetic analysis of the 16S rRNA gene indicated that all the strains were Betaproteobacteria. Two of the strains, BrT and Br-1 belong to a new species, Sideroxydans paludicola; a third strain, LD-1, is related to Sideroxydans lithotrophicus, a recently described species of FeOB. The fourth isolate, Ferritrophicum radicicola, represented a new genus in a new order of Betaproteobacteria, the Ferritrophicales. There are no other cultured isolates in this order. A small subunit rRNA gene-based, cultivation-independent analysis of Typha latifolia collected from a wetland revealed terminal restriction fragment profiles (tRFLP) consistent with the presence of these bacteria in the rhizosphere. These novel organisms likely play an important role in Fe(II) oxidation kinetics and Fe cycling within many terrestrial and freshwater environments.  相似文献   

20.
In laboratory experiments with batch cultures of thermophilic microorganisms isolated from urban heat supply systems, the growth of sulfate-reducing, iron-oxidizing, and iron-reducing bacteria was found to accelerate the corrosion rate of the steel-3 plates used in pipelines. In the absence of bacteria and dissolved oxygen, minimal corrosion was determined. The aforementioned microorganisms, as well as sulfur-oxidizing bacteria, were found to be widespread in water and corrosion deposits in low-alloy steel pipelines (both delivery and return) of the Moscow heat networks, as well as in the corrosion deposits on the steel-3 plates in a testing unit supplied with the network water. The microorganisms were found in samples with a water pH ranging from 8.1 to 9.6 and a temperature lower than 90°C. Magnetite, lepidocrocite, goethite, and X-ray amorphous ferric oxide were the corrosion products identified on the steel-3 plates, as well as siderite, aragonite, and S0. The accumulation of corrosion deposits and variation in the total and local corrosion of the steel plates in a testing unit were considered in terms of the influence of microbial processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号