首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the adsorption properties of acetone on zigzag single-walled BNNTs using density functional theory (DFT) calculations. The results obtained show that acetone is strongly bound to the outer surface of a (5,0) BNNT on the top site directly above the boron atom, with a binding energy of ?96.16 kJ?mol?1 and a B–O binding distance of 1.654 Å. Our first-principles calculations also predict that the ability of zigzag BNNTs to adsorb acetone is significantly stronger than the corresponding ability of zigzag CNTs. A comparative investigation of BNNTs with different diameters indicated that the ability of the side walls of the tubes to adsorb acetone decreases significantly for nanotubes with larger diameters. Furthermore, the stability of the most stable acetone/BNNT complex was tested using ab initio molecular dynamics simulation at room temperature.
Figure
First-principles calculations predict that acetone is strongly bound to the outer surfaces of BNNTs with a binding energy of ?107.14 kJ?mol?1. Comparison with the corresponding adsorption on CNTs reveals that the ability of BNNTs to adsorb acetone is about threefold that of CNTs.  相似文献   

2.
Boron nitride nanotubes (BNNTs) have unique physical properties, which can be exploited in the biomedical field. Hence, the surprising lack of reported studies on their biocompatibility and interactions with living cells, addressed by the present paper which deals the results of such an investigation based on 72 h culture of human neuroblastoma cell line (SH-SY5Y) in the presence of an aqueous suspension of polyethyleneimine (PEI)-coated BNNTs. BNNTs conjugated with fluorescent markers (quantum dots) are employed to enable tracking of their uptake by living cells. The results demonstrate good cytocompatibility together with unequivocal BNNT cellular uptake by an energy-dependent endocytic process.  相似文献   

3.
The adsorption of CO onto Ni-doped boron nitride nanotubes (BNNTs) was investigated using density functional theory at the B3LYP/LanL2DZ level of theory. The structures of the Ni-doped BNNTs and their CO-adsorbed configurations were obtained. It was found that the strength of adsorption of CO onto Ni-doped perfect BNNTs is higher than that on defective BNNTs. The electronic properties of all of the adsorption configurations of CO on Ni-doped BNNTs are reported.
Figure
The optimized structures of CO adsorption on Ni-doped BNNTs  相似文献   

4.
BackgroundNon-viral gene delivery is increasingly investigated as an alternative to viral vectors due to low toxicity and immunogenicity, easy preparation, tissue specificity, and ability to transfer larger sizes of genes.MethodsIn this study, boron nitride nanotubes (BNNTs) are functionalized with oligonucleotides (oligo-BNNTs). The morpholinos complementary to the oligonucleotides attached to the BNNTs (morpholino/oligo-BNNTs) are hybridized to silence the luciferase gene. The morpholino/oligo-BNNTs conjugates are administered to luciferase-expressing cells (MDA-MB-231-luc2) and the luciferase activity is monitored.ResultsThe luciferase activity is decreased when MDA-MB-231-luc2 cells were treated with morpholino/oligo-BNNTs.ConclusionsThe study suggests that BNNTs can be used as a potential vector to transfect cells.General significanceBNNTs are potential new nanocarriers for gene delivery applications.  相似文献   

5.
TRAIL is a member of the tumor necrosis factor family of cytokines, which induces apoptosis of cancer cells, thanks to its binding to its cognate receptors DR5 and DR4. We have recently demonstrated that nanovectorization of TRAIL with single‐walled carbon nanotubes enhanced TRAIL affinity to DR5. In this paper, 1‐pyrenebutyric acid N‐hydroxysuccinimide ester functionalized boron nitride nanotubes (BNNTs) were used to anchor the TRAIL protein. The resulting BNNT/1‐pyrenebutyric acid N‐hydroxysuccinimide ester nanotubes were mixed with methoxy‐poly(ethylene glycol)‐1,2‐distearoyl‐sn‐glycero‐3‐phosphoethanolamine‐N‐conjugates so as to allow a good dispersion of these nanoparticle TRAIL (NPT) in aqueous solution. The difference of binding between NPT and soluble TRAIL to DR4 and DR5 receptors was then studied by the use of affinity chromatography. DR4 and DR5 receptors were thus immobilized on a chromatographic support, and the binding of the 2 ligands TRAIL and NPT to DR4 and DR5 was studied in the temperature range 30°C to 50°C. Negative enthalpy (ΔH ) values indicated that van der Waals interactions and hydrogen bonding are engaged favorably at the ligand‐receptor interface. It was shown that their rank‐ordered affinities were strongly different in the sequence TRAILDR4 < NPTDR4 < TRAILDR5 < NPTDR5, and the highest affinity for NPT to DR4 and DR5 receptors observed at low pHs was due to the less accessibility of the His molecular switch to be protonated when TRAIL was immobilized on BNNTs. Taken together, our results demonstrated that nanovectorization of TRAIL with BNNTs enhanced its binding to both DR4 and DR5 receptors at 37°C. Our novel nanovector could potentially be used for delivering TRAIL to cells for cancer treatment.  相似文献   

6.
Spontaneous entry of water molecules inside single-wall carbon nanotubes (SWCNTs) has been confirmed by both simulations and experiments. Using molecular dynamics simulations, we have studied the thermodynamics of filling of a (6,6) carbon nanotube in a temperature range from 273 to 353 K and with different strengths of the nanotube–water interaction. From explicit energy and entropy calculations using the two-phase thermodynamics method, we have presented a thermodynamic understanding of the filling behaviour of a nanotube. We show that both the energy and the entropy of transfer decrease with increasing temperature. On the other hand, scaling down the attractive part of the carbon–oxygen interaction results in increased energy of transfer while the entropy of transfer increases slowly with decreasing the interaction strength. Our results indicate that both energy and entropy favour water entry into (6,6) SWCNTs. Our results are compared with those of several recent studies of water entry into carbon nanotubes.  相似文献   

7.
BackgroundBoron nitride nanotubes (BNNTs) represent a new opportunity for drug delivery and clinical therapy. The present work has the objective to investigate pectin-coated BNNTs (P-BNNTs) for their biocompatibility on macrophage cultures, since these cells are among the first components of the immune system to interact with administered nanoparticles.MethodsAs first step, the potential toxicity of P-BNNTs is verified in terms of proliferation, oxidative stress induction and apoptosis/necrosis phenomena. Thereafter, the modulation of immune cell response following P-BNNT exposure is evaluated at gene and protein level, in particular focusing on cytokine release. Finally, P-BNNT internalization is assessed through transmission electron microscopy and confocal microscopy.ResultsThe results proved that P-BNNTs are not toxic for macrophages up to 50 μg/ml after 24 h of incubation. The cytokine expression is not affected by P-BNNT administration both at gene and protein level. Moreover, P-BNNTs are internalized by macrophages without impairments of the cell structures.ConclusionsCollected data suggest that P-BNNTs cause neither adverse effects nor inflammation processes in macrophages.General significanceThese findings represent the first and fundamental step in immune compatibility evaluation of BNNTs, mandatory before any further pre-clinical testing.  相似文献   

8.
Recently, the grafting of polymer chains onto nanotubes has attracted increasing attention as it can potentially be used to enhance the solubility of nanotubes and in the development of novel nanotube-based devices. In this article, based on density functional theory (DFT) calculations, we report the formation of trans-polyacetylene on single-walled carbon-doped boron nitride nanotubes (BNNTs) through their adsorption of a series of C(2)H(2) molecules. The results show that, rather than through [2 + 2] cycloaddition, an individualmolecule would preferentially attach to a carbon-doped BNNT via "carbon attack" (i.e., a carbon in the C(2)H(2) attacks a site on the BNNT). The adsorption energy gradually decreases with increasing tube diameter. The free radical of the carbon-doped BNNT is almost completely transferred to the carbon atom at the end of the adsorbed C(2)H(2) molecule. When another C(2)H(2) molecule approaches the carbon-doped BNNT, it is most energetically favorable for this C(2)H(2) molecule to be adsorbed at the end of the previously adsorbed C(2)H(2) molecule, and so on with extra C(2)H(2) molecules, leading to the formation of polyacetylene on the nanotube. The spin of the whole system is always localized at the tip of the polyacetylene formed, which initiates the adsorption of the incoming species. The present results imply that carbon-doped BNNT is an effective "metal-free" initiator for the formation of polyacetylene.  相似文献   

9.
All-atom molecular dynamics (MD) simulations are performed to study the binding of DNA nucleotides with two carbon nanotubes (CNTs) with similar diameters but different chiralities. Two schemes for assigning partial atomic charges (PACs) are adopted: (I) using PACs obtained from isolated DNA nucleotide and CNT optimised in vacuum, and (II) using PACs obtained from optimising nucleotide-CNT hybrid in solution. The former approach is what most MD simulations have used in the study of DNA-CNT hybrids, while in the latter approach, a redistribution of the PACs has occurred upon the hybridisation. Our results show that the charge redistribution has a profound effect on the dynamics of binding. In particular, PACs obtained from (II) lead to more stable binding structures in the MD simulations. The findings suggest that care should be taken in simulating DNA-CNT interactions using the classical force field approach.  相似文献   

10.
In this work, we carried out geometry optimisations and classical molecular dynamics for the problem of cobaltocene (CC) encapsulation into different carbon nanotubes (CNTs) ((7,7), (8,8), (13,0) and (14,0) tubes were used). CCs are molecules composed of two aromatic pentagonal rings (C5H5) sandwiching one cobalt atom. From our simulation results, we observed that CC was encapsulated into CNTs (8,8), (13,0) and (14,0). However, for CNT (7,7), the encapsulation could not occur, in disaggrement with some previous works in the literature. Our results show that the encapsulation process is mainly governed by van der Waals potential barriers.  相似文献   

11.
In this paper, the density, hydrogen bonding and self-diffusivity of water confined in carbon nanotubes are investigated. Molecular dynamics is used to simulate a large variety of nanotubes with various water models. Our results produce, for the first time, the complete trend of these properties from narrow nanotubes, where water shows particularly anomalous behaviour, to large ones where its characteristics are similar to those of bulk.  相似文献   

12.
Recently, the encapsulation of β-carotene molecules into carbon nanotubes has been achieved. In this work, we report molecular dynamics simulations and tight-binding density functional-based results for a theoretical study of the encapsulation processes. Our results show that the molecules undergo geometrical deformations when encapsulated with significant changes in their electronic structure. Based on these results, we propose a new interpretation to the changes associated with the β-carotene absorption bands experimentally observed.  相似文献   

13.
Abstract

The present study focuses on the prediction and investigation of binding properties of penicillamine with pure (5,5) single-walled carbon nanotube (SWCNT) and functionalized SWCNT (f-SWCNT) through the B3LYP and M06-2X functionals using the 6-31G** basis set. The electronic and structural properties, adsorption energy and frontier molecular orbitals of various configurations are examined. Our theoretical results indicated that the interaction of the nanotubes with penicillamine molecule is weak so that the drug adsorption process is typically physisorption. Also, results of theoretical calculations show that the adsorption of the drug molecule on f-SWCNT is stronger with shorter intermolecular distances in comparison to pure SWCNT. The natural bond orbital (NBO) analysis of studied systems demonstrates that the charge is transferred from penicillamine molecule to the nanotubes. Furthermore, molecular dynamics (MD) simulation is employed to evaluate the dynamic and diffusion behavior of drug molecule on SWCNT and f-SWCNT. Energy results show that drug molecule spontaneously moves toward the carriers, and the van der Waals energy contributions in drug adsorption are more than electrostatic interaction. The obtained results from MD simulation confirm that the functionalization of SWCNT leads to increase in the solubility of the carrier in aqueous solution.

Communicated by Ramaswamy H. Sarma  相似文献   

14.
In this study, molecular dynamics simulation is used to investigate the adsorption of an anticancer drug, doxorubicin, on bundles of functionalized single-walled carbon nanotubes (SWNTs) in an aqueous solution. Carboxylic group has been selected as the functional group. Molecular dynamics (MD) simulations are performed for both separated systems containing a SWNT bundle and a functionalized carbon nanotube bundle, and results are compared with existing experimental data. MD results show that doxorubicin can be adsorbed on CNTs using different methods such as entrapment within CNT bundle, attachment to the side wall of the CNT, and adsorption on the CNT inner cavity. For functionalized CNT, the adsorption of drugs on the functional groups is essential for predicting the enhancement of drug loading on the functionalized nanotubes. Furthermore, the adsorption behavior of doxorubicin on CNTs is fitted with Langmuir and Freundlich isotherm models. The results show that Langmuir model can predict the adsorption behavior of doxorubicin on CNTs more accurately than Freundlich model does. As predicted by this isotherm model, the adsorption process of doxorubicin on CNTs is relatively difficult, but it can be improved by increasing the functional groups on the CNTs surface.  相似文献   

15.
H. Shen 《Molecular simulation》2013,39(11):939-944
The Molecular dynamics (MD) method was used to predict the thermal-stability and tensile properties of two single-walled Si nanotubes that are hydrogenated outside and both inside and outside respectively, i.e. the Sio–H and Siio–H nanotubes. Further, the axial-tensile properties of the two Si–H nanotubes were discussed by comparison with one (14,14) carbon nanotube. The obtained results show that: (1) the two Si–H nanotubes both have the Si skeletons with the structure similar to the {110} planes of single-crystal silicon, and they can stably exist only at the temperature lower than 200 and 125 K respectively and (2) the Sio–H and Siio–H nanotubes, respectively, have the tensile strength of 4.0 and 1.2 GPa as well as the fracture strain of 0.35 and 0.32; both their tensile strength and fracture strain are much lower than the corresponding ones of the (14,14) carbon-tube.  相似文献   

16.
The influence of the single-walled carbon nanotubes on the phospholipid bilayer has been studied using steered molecular dynamics (SMD) simulations. The impact of different nanotubes on the phospholipid bilayer structure is discussed as well as the speed of indentation. Additionally, a series of simulations with pulling out of the nanotubes from the membrane were performed. The deflection of the membrane in both nanoindenation and extraction processes is also discussed. The self-sealing ability of membrane during this process is examined. Complete degradation of the bilayer was not observed even for the most invasive nanoindentation process studied. The obtained results show that carbon nanotubes can be regarded as potential drug carriers for targeted therapy.  相似文献   

17.
Communication between cells is crucial for proper functioning of multicellular organisms. The recently discovered membranous tubes, named tunneling nanotubes, that directly bridge neighboring cells may offer a very specific and effective way of intercellular communication. Our experiments on RT4 and T24 urothelial cell lines show that nanotubes that bridge neighboring cells can be divided into two types. The nanotubes of type I are shorter and more dynamic than those of type II, and they contain actin filaments. They are formed when cells explore their surroundings to make contact with another cell. The nanotubes of type II are longer and more stable than type I, and they have cytokeratin filaments. They are formed when two already connected cells start to move apart. On the nanotubes of both types, small vesicles were found as an integral part of the nanotubes (that is, dilatations of the nanotubes). The dilatations of type II nanotubes do not move along the nanotubes, whereas the nanotubes of type I frequently have dilatations (gondolas) that move along the nanotubes in both directions. A possible model of formation and mechanical stability of nanotubes that bridge two neighboring cells is discussed.  相似文献   

18.
Membrane nanotubes are a morphologically versatile group of membrane structures (some resembling filopodia), usually connecting two closely positioned cells. In this article, we set morphological criteria that distinguish the membrane nanotubes from filopodia, as there is no specific molecular marker known to date that unequivocally differentiates between filopodia and protruding nanotubes. Membrane nanotubes have been extensively studied from the morphological point of view and the transport that can be conducted through them, but little is known about the way they connect to the adjacent cell. Our results show that the nanotubes may connect to a neighboring cell by anchoring junctions. Among cell adhesion proteins, N-cadherin, β-catenin, nectin-2, afadin and the desmosomal protein desmoplakin-2 were immune-labeled. We found that N-cadherin and β-catenin are concentrated in nanotubes, while the concentrations of other junction-involved proteins are not increased in these structures. On the basis of data from transmission electron microscopy, we propose a model of the nanotube attachment where the connection of nanotubes is stabilized by several anchoring junctions, most likely adherens junctions that are formed when the nanotube is sliding along the target cell membrane.  相似文献   

19.
Carbon nanotubes have been proposed to be efficient nanovectors able to deliver genetic or therapeutic cargo into living cells. However, a direct evidence of the molecular mechanism of their translocation across cell membranes is still needed. Here, we report on an extensive computational study of short (5 nm length) pristine and functionalized single-walled carbon nanotubes uptake by phospholipid bilayer models using all-atom molecular dynamics simulations. Our data support the hypothesis of a direct translocation of the nanotubes through the phospholipid membrane. We find that insertion of neat nanotubes within the bilayer is a "nanoneedle" like process, which can often be divided in three consecutive steps: landing and floating, penetration of the lipid headgroup area and finally sliding into the membrane core. The presence of functional groups at moderate concentrations does not modify the overall scheme of diffusion mechanism, provided that their deprotonated state favors translocation through the lipid bilayer.  相似文献   

20.
Abstract

In this study, the adsorption of Hydroxyurea (HU) onto the inner and outer surfaces of boron nitride and carbon nanotubes (CNTs) was investigated using the density functional theory calculations and molecular dynamics (MDs) simulations in aqueous solution. The values of the adsorption energy show that HU molecule is preferentially adsorbed inside of boron nitride and CNTs with the molecular axis parallel to the tubes axis, which means that the cavity of nanotubes is favorable for encapsulation of this drug. Also, it was found that the HU/boron nitride nanotube (BNNT) system is more stable than the HU/CNT system. The stability of the complexes of HU/ BNNT attributed to the formation of the intermolecular hydrogen bonds between the H atoms of HU molecule and the N atoms of BNNT, which is confirmed by Bader’s quantum theory of atoms in molecules. The natural bond orbital analysis shows the charge transfers occur from HU molecule to nanotubes in all complexes. Moreover, the adsorption of HU molecule on the surfaces of the nanotubes was investigated by explicit water models. Also, the adsorption behavior of HU on the functionalized boron nitride and CNTs is investigated to design and develop new nanocarriers for biomedical applications. Furthermore, MDs simulations are examined in the presence of one and two drug molecules. The obtained results illustrate that the lowest value of Lennard–Jones (L–J) energy between drug and nanotubes exist in the simulation system with two drug molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号