首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 6 毫秒
1.
A high-throughput bacterial biofilm retention screening method has been augmented to facilitate the rapid analysis and down-selection of fouling-release coatings for identification of promising candidates. Coatings were cast in modified 24-well tissue culture plates and inoculated with the marine bacterium Cytophaga lytica for attachment and biofilm growth. Biofilms retained after rinsing with deionised water were dried at ambient laboratory conditions. During the drying process, retained biofilms retracted through a surface de-wetting phenomenon on the hydrophobic silicone surfaces. The retracted biofilms were stained with crystal violet, imaged, and analysed for percentage coverage. Two sets of experimental fouling-release coatings were analysed with the high-throughput biofilm retention and retraction assay (HTBRRA). The first set consisted of a series of model polysiloxane coatings that were systematically varied with respect to ratios of low and high MW silanol-terminated PDMS, level of cross-linker, and amount of silicone oil. The second set consisted of cross-linked PDMS-polyurethane coatings varied with respect to the MW of the PDMS and end group functionality. For the model polysiloxane coatings, HTBRRA results were compared to data obtained from field immersion testing at the Indian River Lagoon at the Florida Institute of Technology. The percentage coverage calculations of retracted biofilms correlated well to barnacle adhesion strength in the field (R(2)=0.82) and accurately identified the best and poorest performing coating compositions. For the cross-linked PDMS-polyurethane coatings, the HTBRRA results were compared to combinatorial pseudobarnacle pull-off adhesion data and good agreement in performance was observed. Details of the developed assay and its implications in the rapid discovery of new fouling-release coatings are discussed.  相似文献   

2.
The authors recently reported on the development of a novel multiwell plate screening method for the high-throughput assessment of bacterial biofilm retention on surfaces. Two series of biocide containing coatings were prepared to assess the ability of the developed assay to adequately discern differences in antifouling performance: i) a commercially available poly(methyl methacrylate) (PMMA) and silicone elastomer (DC) physically blended with an organic antifouling biocide Sea-Nine 211 (SN211) (4,5-dichloro-2-n-octyl-3(2H)-isothiazolone), and ii) a silanol-terminated polydimethylsiloxane (PDMS-OH) reacted with an alkoxy silane-modified polyethylenimine containing bound ammonium salt groups (PEI-AmCl). Three marine bacteria were utilised to evaluate the SN211 blended coatings (Pseudoalteromonas atlantica ATCC 19262, Cobetia marina ATCC 25374, Halomonas pacifica ATCC 27122) and the marine bacterium Cytophaga lytica was utilised to evaluate the PEI-AmCl/PDMS-OH coatings. The SN211 blended coatings showed a general trend of decreasing biofilm retention as the concentration of SN211 increased in both PMMA and DC. HPLC analysis revealed that reduction in biofilm retention was positively correlated with the amount of SN211 released into the growth medium over the length of the bacterial incubation. When compared to PMMA, DC consistently showed an equal or greater percent reduction in biofilm retention as the level of SN211 loading increased, although at lower loading concentrations. Evaluations of the PEI-AmCl/PDMS-OH coatings with C. lytica showed that all PEI-AmCl loading concentrations significantly reduced biofilm retention (p<0.0001) by a surface contact phenomenon. The high-throughput bacterial biofilm growth and retention assay has been shown to be useful as an effective primary screening tool for the rapid assessment of antifouling materials.  相似文献   

3.
High-throughput methods were used to prepare and characterize the fouling-release (FR) properties of an array of amphiphilic polysiloxane-based coatings possessing systematic variations in composition. The coatings were derived from a silanol-terminated polydimethylsiloxane, a silanol-terminated polytrifluorpropylmethylsiloxane (CF3-PDMS), 2-[methoxy(polyethyleneoxy)propyl]-trimethoxysilane (TMS-PEG), methyltriacetoxysilane and hexamethyldisilazane-treated fumed silica. The variables investigated were the concentration of TMS-PEG and the concentration of CF3-PDMS. In general, it was found that the TMS-PEG and the CF3-PDMS had a synergist effect on FR properties with these properties being enhanced by combining both compounds into the coating formulations. In addition, reattached adult barnacles removed from coatings possessing both TMS-PEG and relatively high levels of CF3-PDMS displayed atypical base-plate morphologies. The majority of the barnacles removed from these coatings exhibited a cupped or domed base-plate as compared to the flat base-plate observed for the control coating that did not contain TMS-PEG or CF3-PDMS. Coating surface analysis using water contact angle measurements indicated that the presence of CF3-PDMS facilitated migration of TMS-PEG to the coating/air interface during the film formation/curing process. In general, coatings containing both TMS-PEG and relatively high levels of CF3-PDMS possessed excellent FR properties.  相似文献   

4.
Polysiloxane coatings containing chemically-bound (“tethered”) quaternary ammonium salt (QAS) moieties were investigated for potential application as environmental-friendly coatings to control marine biofouling. A combinatorial/high-throughput approach was applied to the investigation to enable multiple variables to be probed simultaneously and efficiently. The variables investigated for the moisture-curable coatings included QAS composition, ie alkyl chain length, and concentration as well as silanol-terminated polysiloxane molecular weight. A total of 75 compositionally unique coatings were prepared and characterized using surface characterization techniques and biological assays. Biological assays were based on two different marine microorganisms, a bacterium, Cellulophaga lytica and a diatom, Navicula incerta, as well as a macrofouling alga, Ulva. The results of the study showed that all three variables influenced coating surface properties as well as antifouling (AF) and fouling-release (FR) characteristics. The incorporation of QAS moieties into a polysiloxane matrix generally resulted in an increase in coating surface hydrophobicity. Characterization of coating surface morphology revealed a heterogeneous, two-phase morphology for many of the coatings investigated. A correlation was found between water contact angle and coating surface roughness, with the contact angle increasing with increasing surface roughness. Coatings based on the QAS moiety containing the longest alkyl chain (18 carbons) displayed the highest micro-roughness and, thus, the most hydrophobic surfaces. With regard to AF and FR properties, coatings based on the 18 carbon QAS moieties were very effective at inhibiting C. lytica biofilm formation and enabling easy removal of Ulva sporelings (young plants) while coatings based on the 14 carbon QAS moities were very effective at inhibiting biofilm growth of N. incerta.  相似文献   

5.
Polysiloxane coatings containing chemically-bound ("tethered") quaternary ammonium salt (QAS) moieties were investigated for potential application as environmental-friendly coatings to control marine biofouling. A combinatorial/high-throughput approach was applied to the investigation to enable multiple variables to be probed simultaneously and efficiently. The variables investigated for the moisture-curable coatings included QAS composition, ie alkyl chain length, and concentration as well as silanol-terminated polysiloxane molecular weight. A total of 75 compositionally unique coatings were prepared and characterized using surface characterization techniques and biological assays. Biological assays were based on two different marine microorganisms, a bacterium, Cellulophaga lytica and a diatom, Navicula incerta, as well as a macrofouling alga, Ulva. The results of the study showed that all three variables influenced coating surface properties as well as antifouling (AF) and fouling-release (FR) characteristics. The incorporation of QAS moieties into a polysiloxane matrix generally resulted in an increase in coating surface hydrophobicity. Characterization of coating surface morphology revealed a heterogeneous, two-phase morphology for many of the coatings investigated. A correlation was found between water contact angle and coating surface roughness, with the contact angle increasing with increasing surface roughness. Coatings based on the QAS moiety containing the longest alkyl chain (18 carbons) displayed the highest micro-roughness and, thus, the most hydrophobic surfaces. With regard to AF and FR properties, coatings based on the 18 carbon QAS moieties were very effective at inhibiting C. lytica biofilm formation and enabling easy removal of Ulva sporelings (young plants) while coatings based on the 14 carbon QAS moities were very effective at inhibiting biofilm growth of N. incerta.  相似文献   

6.
In order to facilitate a semi-high throughput approach to the evaluation of novel fouling-release coatings, a 'spinjet' apparatus has been constructed. The apparatus delivers a jet of water of controlled, variable pressure into the wells of 24-well plates in order to facilitate measurement of the strength of adhesion of algae growing on the base of the wells. Two algae, namely, sporelings (young plants) of the green macroalga Ulva and a diatom (Navicula), were selected as test organisms because of their opposing responses to silicone fouling-release coatings. The percentage removal of algal biofilm was positively correlated with the impact pressure for both organisms growing on all the coating types. Ulva sporelings were removed from silicone elastomers at low impact pressures in contrast to Navicula cells which were strongly attached to this type of coating. The data obtained for the 24-well plates correlated with those obtained for the same coatings applied to microscope slides. The data show that the 24-well plate format is suitable for semi-high throughput screening of the adhesion strength of algae.  相似文献   

7.
DNA ligase catalyzes the closure of single-strand nicks in double-stranded DNA that arise during replication and recombination. Inhibition of bacterial ligase is expected to cause chromosome degradation and cell death, making it an attractive target for new antibacterials. The prototypical bacterial ligase couples the hydrolysis of NAD(+) to phosphodiester bond formation between an adjacent 3'OH and 5'-terminal phosphate of nicked duplex DNA. The first step is the reversible formation of a ligase-adenylate from the reaction between apoenzyme and NAD(+). Inhibitors that compete with NAD(+) are expected to be bacterial specific because eukaryotic DNA ligases use ATP and differ in the sequence composition of their adenylation domain. We report here a high-throughput assay that measures the adenylation reaction specifically by monitoring ligase-AMP formation via scintillation proximity technologies. Escherichia coli DNA ligase was biotinylated in vivo; after reaction with radiolabeled NAD(+), ligase-[(3)H]AMP could be captured onto the streptavidin-coated surface of the solid scintillant. The method was ideal for high-throughput screening because it required minimal manipulations and generated a robust signal with minimal scatter. Certain adenosine analogs were found to inhibit the adenylation assay and had similar potency of inhibition in a DNA ligation assay.  相似文献   

8.
We have established a simple flow chamber-based procedure which provides an accurate and reproducible way to measure the amount of biofilm formed on an implantable biomaterial surface. The method enables the side-by-side evaluation of different materials under hydrodynamic flow conditions similar to those found on an implanted device. We have used the method to evaluate the biofilm forming capacity of clinically isolated Escherichia coli on silicone rubber and on silicone rubber containing a hydrophilic coating. It was found that the surface chemistry influenced the colonization of the isolates very differently. In addition, the temperature was found to have a considerable influence upon the adhesion and biofilm forming capacity of some of the isolates, and that the influence of surface chemistry depended on temperature. Our results suggest that the step from using E. coli laboratory strains to clinical isolates entails a significant rise in complexity and yields results that cannot be generalized. The results should be valuable information for researchers working with pre-clinical evaluation of device-associated E. coli infections.  相似文献   

9.
We have demonstrated that citrate synthase may be assayed by a simple, discontinuous, spectrophotometric procedure based on the measurement of oxaloacetate utilization with 2,4-dinitrophenylhydrazine. The assay is applicable both to the purified enzyme and to cell extracts, and has the advantage that it can be used in the presence of high concentrations of thiols and thioesters. We have used this new assay in part of our investigations into the inhibitory effects of palmitoyl thioesters on diverse citrate synthases. Both palmitoyl-CoA and palmitoyl thioglycollate inhibit citrate synthases from pig heart, Bacillus megaterium and Escherichia coli, the E. coli enzyme showing the greatest sensitivity to these effectors. With palmitoyl-CoA the extent of inhibition is time-dependent, but the enzymes can be protected from the effect by the substrates oxaloacetate and acetyl-CoA. Using the dinitrophenylhydrazine assay, we have shown that the thioester bond is essential for inhibition; that is, if the palmitoyl thioesters are cleaved to give a mixture of palmitate and a thiol compound, the inhibitions of pig heart and B. megaterium citrate synthases are eliminated and that of the E. coli enzyme is markedly decreased.  相似文献   

10.
A challenge of the post-genomic era is to determine the functions of a plethora of orphan genes. This is a more acute problem when dealing with large gene families, such as the superfamily encoding cytochrome P450 enzymes in higher plants. We propose here a new, simple, medium-throughput methodology to screen for potential substrates of orphan P450 mono-oxygenases. The same technique can also be applied to screening for inhibitors of the oxygenases involved in the biosynthesis of compounds essential for plant development, such as growth regulators. The method is based on a commercially available microplate system, which detects the oxygen consumed by the catalytic reaction via an oxygen-sensing fluorophore. It is optimized using as a model CYP73A1, the cinnamic acid hydroxylase from Helianthus tuberosus, expressed in yeast. We show that the procedure is suitable not only for the detection and real-time monitoring, but also for the quantitative evaluation of enzyme activity. This new method has broad application for the identification of candidate substrates and inhibitors in chemical libraries, to support determination of physiological substrates, development of plant growth regulators, investigations on herbicide and pollutant metabolism, synthesis of valuable compounds and drug design. It also provides a fast-assay platform for determination of catalytic and inhibition parameters. The method applies to plant P450 enzymes, but also to cytochromes P450 from other organisms, and all types of oxygenases. The critical steps, calculation of oxygen consumption from fluorescence signal, and limits of the methods are discussed.  相似文献   

11.
Antiviral resistance is currently monitored by a labelled enzymatic assay, which can give inconsistent results because of the short half‐life of the labelled product, and variations in assay conditions. In this paper, we describe a competitive surface plasmon resonance (SPR) inhibition assay for measuring the sensitivities of wild‐type neuraminidase (WT NA) and the H274Y (histidine 274 tyrosine) NA mutant to antiviral drugs. The two NA isoforms were expressed in High‐five™ (Trichoplusia ni) insect cells. A spacer molecule (1,6‐hexanediamine (HDA)) was conjugated to the 7‐hydroxyl group of zanamivir, and the construct (HDA‐zanamivir) was immobilized onto a SPR sensor chip to obtain a final immobilization response of 431 response units. The immobilized HDA‐zanamivir comprised a bio‐specific ligand for the WT and mutant proteins. The effects of the natural substrate (sialic acid) and two inhibitors (zanamivir and oseltamivir) on NA binding to the immobilized ligand were studied. The processed SPR data was analysed to determine 50% inhibitory concentrations (IC50‐spr), using a log dose–response curve fit. Although both NA isoforms had almost identical IC50‐spr values for sialic acid (WT = 5.5 nM; H274Y mutant = 3.25 nM) and zanamivir (WT = 2.16 nM; H274Y mutant = 2.42 nM), there were significant differences between the IC50‐spr values obtained for the WT (7.7 nM) and H274Y mutant (256 nM) NA in the presence of oseltamivir, indicating that oseltamivir has a reduced affinity for the H274Y mutant. The SPR inhibition assay strategy presented in this work could be applied for the rapid screening of newly emerging variants of NA for their sensitivity to antiviral drugs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A requirement for understanding morphogenesis is being able to quantify expansion at the cellular scale. Here, we present new software (RootflowRT) for measuring the expansion profile of a growing root at high spatial and temporal resolution. The software implements an image processing algorithm using a novel combination of optical flow methods for deformable motion. The algorithm operates on a stack of nine images with a given time interval between each (usually 10 s) and quantifies velocity confidently at most pixels of the image. The root does not need to be marked. The software calculates components of motion parallel and perpendicular to the local tangent of the root's midline. A variation of the software has been developed that reports the overall root growth rate versus time. Using this software, we find that the growth zone of the root can be divided into two distinct regions, an apical region where the rate of motion, i.e. velocity, rises gradually with position and a subapical region where velocity rises steeply with position. In both zones, velocity increases almost linearly with position, and the transition between zones is abrupt. We observed this pattern for roots of Arabidopsis, tomato (Lycopersicon lycopersicum), lettuce (Lactuca sativa), alyssum (Aurinia saxatilis), and timothy (Phleum pratense). These velocity profiles imply that relative elongation rate is regulated in a step-wise fashion, being low but roughly uniform within the meristem and then becoming high, but again roughly uniform, within the zone of elongation. The executable code for RootflowRT is available from the corresponding author on request.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号