首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
海洋真菌抗污损活性天然产物研究   总被引:1,自引:0,他引:1  
黏附于海洋船舶或人工设施表面的污损生物给人类海洋生产活动与生态环境带来诸多不利影响.将具有抗污损活性的化合物开发成防污涂料是目前防治海洋生物污损的最常用手段之一.而大量传统有机金属防污剂因其严重毒副作用被禁用,亟须开发高效、环境友好型抗污损涂料.海洋真菌能够产生大量结构新颖、作用机制独特的高效、低毒/无毒抗污损活性次级...  相似文献   

2.
Three azulenoid sesquiterpenes ( 1  –  3 ) were isolated from the Antarctic gorgonian Acanthogorgia laxa collected by bottom trawls at −343 m. Besides linderazulene ( 1 ), and the known ketolactone 2 , a new brominated C16 linderazulene derivative ( 3 ) was also identified. This compound has an extra carbon atom at C(7) of the linderazulene framework. The antifouling activity of compounds 1 and 2 was assayed in the laboratory with Artemia salina larvae, and also in field tests, by incorporation in soluble‐matrix experimental antifouling paints. The results obtained after a 45 days field trial of the paints, showed that compounds 1 and 2 displayed good antifouling potencies against a wide array of organisms. Compound 3 , a benzylic bromide, was unstable and for this reason was not submitted to bioassays. Two known cembranolides: pukalide and epoxypukalide, were also identified as minor components of the extract.  相似文献   

3.
Several aaptamine derivatives were selected as potential zebra mussel (Dreissena polymorpha) antifoulants because of the noteworthy absence of fouling observed on Aaptos sponges. Sponges of the genus Aaptos collected in Manado, Indonesia consistently produce aaptamine-type alkaloids. To date, aaptamine and its derivatives have not been carefully evaluated for their antifoulant properties. Structure–activity relationship studies were conducted using several aaptamine derivatives in a zebra mussel antifouling assay. From these data, three analogs have shown significant antifouling activity against zebra mussel attachment. Aaptamine, isoaaptamine, and the demethylated aaptamine compounds used in the zebra mussel assay produced EC50 values of 24.2, 11.6, and 18.6 μM, respectively. In addition, neither aaptamine nor isoaaptamine produced a phytotoxic response (as high as 300 μM) toward a nontarget organism, Lemna pausicostata, in a 7-day exposure. The use of these aaptamine derivatives from Aaptos sp. as potential environmentally benign antifouling alternatives to metal-based paints and preservatives is significant, not only as a possible control of fouling organisms, but also to highlight the ecological importance of these and similar biochemical defenses.  相似文献   

4.
The acyclic monoterpene myrcene is the likely progenitor of the unusual cytotoxic halogenated monoterpenes that are found in marine algae and that function as feeding deterrents to herbivores. Myrcene synthase was isolated from suspension cultures of the marine red alga Ochtodes secundiramea, representing the first enzyme of this type from a marine organism. The algal myrcene synthase produces exclusively myrcene from the natural substrate geranyl diphosphate (GDP), utilizes Mg(+2) as the required divalent metal ion cofactor, has a molecular mass of about 69 kDa, and exhibits a pH optimum near 7.2. These features are similar to those of monoterpene synthases from terrestrial organisms. When incubated with neryl diphosphate (the cis-isomer of GDP), the O. secundiramea myrcene synthase produces the cyclic monoterpene limonene, whereas incubation with (+/-)linalyl diphosphate (the tertiary allylic isomer of geranyl diphosphate) yields both acyclic and cyclic monoterpenes. These results suggest that the enzyme is incapable of isomerizing geranyl diphosphate to linalyl diphosphate, a feature common to all monoterpene cyclases from terrestrial sources. The limited catalytic capability of the myrcene synthase may reflect the ancient evolutionary origin of the producing organism. The ability to assay this enzyme in cultured algae, grown under strictly defined conditions, provides an unparalleled opportunity to delineate factors eliciting the biosynthesis of this class of secondary metabolites, to investigate the metabolic pathway leading to the halogenated monoterpenes, and to determine their role in the chemical ecology of marine algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号