首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aldred N  Clare AS 《Biofouling》2008,24(5):351-363
Over the last decade, approaches to the development of surfaces that perturb settlement and/or adhesion by barnacles have diversified substantially. Although, previously, coatings research focussed almost exclusively on biocidal technologies and low modulus, low surface-free-energy 'fouling-release' materials, novel strategies to control surface colonisation are now receiving significant attention. It is timely, therefore, to review the current 'state of knowledge' regarding fouling-resistant surface characteristics and their mechanisms of action against settling larvae of barnacles. The role of the barnacle in marine fouling is discussed here in the context of its life cycle and the behavioural ecology of its cypris larva. The temporary and permanent adhesion mechanisms of cyprids are covered in detail and an overview of adult barnacle adhesion is presented. Recent legislation has directed academic research firmly towards environmentally inert marine coatings, so the actions of traditional biocides on barnacles are not described here. Instead, the discussion is restricted to those surface modifications that interfere with settlement-site selection and adhesion of barnacle cypris larvae; specifically, textural engineering of surfaces, development of inert 'non-fouling' surfaces and the use of enzymes in antifouling.  相似文献   

2.
Over the last decade, approaches to the development of surfaces that perturb settlement and/or adhesion by barnacles have diversified substantially. Although, previously, coatings research focussed almost exclusively on biocidal technologies and low modulus, low surface-free-energy ‘fouling-release’ materials, novel strategies to control surface colonisation are now receiving significant attention. It is timely, therefore, to review the current ‘state of knowledge’ regarding fouling-resistant surface characteristics and their mechanisms of action against settling larvae of barnacles. The role of the barnacle in marine fouling is discussed here in the context of its life cycle and the behavioural ecology of its cypris larva. The temporary and permanent adhesion mechanisms of cyprids are covered in detail and an overview of adult barnacle adhesion is presented. Recent legislation has directed academic research firmly towards environmentally inert marine coatings, so the actions of traditional biocides on barnacles are not described here. Instead, the discussion is restricted to those surface modifications that interfere with settlement-site selection and adhesion of barnacle cypris larvae; specifically, textural engineering of surfaces, development of inert ‘non-fouling’ surfaces and the use of enzymes in antifouling.  相似文献   

3.
藤壶附着:从基底探测到胶的固化   总被引:1,自引:0,他引:1  
藤壶在水下设施上的牢固黏附一方面造成极大的污损和危害,另一方面为水下的牢固粘接提供了灵感.相关的防污和水下超粘接等技术的解决强烈依赖于对其附着过程及分子机制的理解.目前,对藤壶黏附的宏观过程已有了较为深入的了解,主要包括基底探测、信号传导、胶液分泌以及胶的固化,但对该过程中作用的分子机制如受体蛋白的识别、基因表达的调控以及胶蛋白的交联固化的研究依然有限,而上述任何阶段的干扰都可为防污或水下粘接提供重要的理论指导.因此,深入理解各阶段的相关分子机制对防污和水下粘接至关重要.本文综述了近年来对藤壶附着的相关进展,介绍附着过程中的内部信号分子响应以及胶液分泌过程中的固化交联机制,指出了存在的问题,并提出进一步可能的研究要点.  相似文献   

4.
Fouling-release coatings prevent fouling of ships' hulls through hydrodynamic forces generated as the ship moves through the water. The effectiveness of such coatings may be evaluated by measuring the adhesion strength of settled organisms, e.g. barnacles. The influence of desiccation of the barnacle adhesive on such measurements was investigated. Shear forces required to remove barnacles of the genus Balanus increased during the course of desiccation up to the point when the barnacles suddenly self-detached. The increase was thought to be due to the rising cohesive strength of the adhesive. Growing tensile forces within the weakly cross-linked adhesive, however, are suggested to have led to self-detachment. The shear forces required to remove barnacles of the genus Elminius were generally low and did not differ significantly during the course of desiccation. The different results may be attributed to specific base morphologies. It was concluded that measuring the adhesion strength of members of the Balanidae on non-stick surfaces in air could produce flawed results due to the influence of desiccation of the barnacle adhesive. The investigations have also provided new insights into the characteristics of barnacle adhesive.  相似文献   

5.
Five non-biocidal xerogel coatings were compared to two commercial non-biocidal coatings and a silicone standard with respect to antifouling (AF)/fouling-release (FR) characteristics. The formation and release of biofilm of the marine bacterium Cellulophaga lytica, the attachment and release of the microalga Navicula incerta, and the fraction removal and critical removal stress of reattached adult barnacles of Amphibalanus amphitrite were evaluated in laboratory assays. Correlations of AF/FR performance with surface characteristics such as wettability, surface energy, elastic modulus, and surface roughness were examined. Several of the xerogel coating compositions performed well against both microfouling organisms while the commercial coatings performed less well toward the removal of microalgae. Reattached barnacle adhesion as measured by critical removal stress was significantly lower on the commercial coatings when compared to the xerogel coatings. However, two xerogel compositions showed release of 89-100% of reattached barnacles. These two formulations were also tested in the field and showed similar results.  相似文献   

6.

Fouling-release coatings prevent fouling of ships' hulls through hydrodynamic forces generated as the ship moves through the water. The effectiveness of such coatings may be evaluated by measuring the adhesion strength of settled organisms, e.g. barnacles. The influence of desiccation of the barnacle adhesive on such measurements was investigated. Shear forces required to remove barnacles of the genus Balanus increased during the course of desiccation up to the point when the barnacles suddenly self-detached. The increase was thought to be due to the rising cohesive strength of the adhesive. Growing tensile forces within the weakly cross-linked adhesive, however, are suggested to have led to self-detachment. The shear forces required to remove barnacles of the genus Elminius were generally low and did not differ significantly during the course of desiccation. The different results may be attributed to specific base morphologies. It was concluded that measuring the adhesion strength of members of the Balanidae on non-stick surfaces in air could produce flawed results due to the influence of desiccation of the barnacle adhesive. The investigations have also provided new insights into the characteristics of barnacle adhesive.  相似文献   

7.
Current antifouling (AF) technologies are based on the continuous release of biocides into the water, and consequently discharge into the environment. Major efforts to develop more environmentally friendly coatings require efficient testing in laboratory assays, followed by field studies. Barnacles are important fouling organisms worldwide, increasing hydrodynamic drag on ships and damaging coatings on underwater surfaces, and thus are extensively used as models in AF research, mostly in static, laboratory-based systems. Reliable flow-through test assays for the screening of biocide-containing AF paints, however, are rare. Herein, a flow-through bioassay was developed to screen for diverse low-release biocide paints, and to evaluate their effects on pre- and post-settlement traits in barnacles. The assay distinguishes between the effects from direct surface contact and bulk-water effects, which are crucial when developing low-emission AF coatings. This flow-through bioassay adds a new tool for rapid laboratory-based first-stage screening of candidate compounds and novel AF formulations.  相似文献   

8.
Sangeetha Raman 《Biofouling》2013,29(6):569-577
The barnacle exhibits a high degree of control over its attachment onto different types of solid surface. The structure and composition of barnacle cement have been reported previously, but mostly for barnacles growing on low surface energy materials. This article focuses on the strategies used by barnacles when they attach to engineering materials such as polymethylmethacrylate (PMMA), titanium (Ti) and stainless steel 316L (SS316L). Adhesion to these substrata is compared in terms of morphological structure, thickness and functional groups of the primary cement, the molting cycle and the nanomechanical properties of the cement. Structural characterization studies using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in conjunction with nanomechanical characterization and infrared spectroscopy (FTIR) are used to understand the differences in the adhesion of primary barnacle cement to the different substrata. The results provide new insights into understanding the mechanisms at work across the barnacle–substratum interface.  相似文献   

9.
A quantitative genetics approach was used to examine variation in the characteristics of the adhesive plaque of the barnacle Balanus amphitrite Darwin attached to two silicone substrata. Barnacles settled on silicone polymer films occasionally form thick, soft adhesive plaques, in contrast to the thin, hard plaques characteristic of attachment to other surfaces. The proportion of barnacles producing a thick adhesive plaque was 0.31 for Veridian, a commercially available silicone fouling-release coating, and 0.18 for Silastic T-2, a silicone rubber used for mold-making. For both materials, significant variation among maternal families in the proportion of barnacles producing a thick adhesive plaque was observed, which suggests the presence of genetic variation, or maternal environmental effects, for this plaque characteristic. For the Veridian coating, barnacles expressing the thick adhesive plaque also exhibited significantly reduced tenacity. This represents the first reported case for potential genetic control of intraspecific phenotypic variation in the physical characteristics and tenacity of the adhesive of a fouling invertebrate.  相似文献   

10.
Standard approaches for measuring adhesion strength of fouling organisms use barnacles, tubeworms or oysters settled and grown in the field or laboratory, to a measurable size. These approaches suffer from the vagaries of larval supply, settlement behavior, predation, disturbance and environmental stress. Procedures for reattaching barnacles to experimental surfaces are reported. When procedures are followed, adhesion strength measurements on silicone substrata after 2 weeks are comparable to those obtained using standard methods. Hydrophilic surfaces require reattachment for 2-4 weeks. The adhesion strength of barnacles in reattachment assays was positively correlated to results obtained from field testing a series of experimental polysiloxane fouling-release coatings (r = 0.89). The reattachment method allows for precise barnacle orientation, enabling the use of small surfaces and the potential for automation. The method enables down-selection of coatings from combinatorial approaches to manageable levels for definitive field testing. Reattachment can be used with coatings that combine antifouling and fouling-release technologies.  相似文献   

11.
Silicone coatings are currently the most effective non-toxic fouling release surfaces. Understanding the mechanisms that contribute to the performance of silicone coatings is necessary to further improve their design. The objective of this study was to examine the effect of coating thickness on basal plate morphology, growth, and critical removal stress of the barnacle Balanus amphitrite. Barnacles were grown on silicone coatings of three thicknesses (0.2, 0.5 and 2 mm). Atypical ("cupped") basal plate morphology was observed on all surfaces, although there was no relationship between coating thickness and i) the proportion of individuals with the atypical morphology, or ii) the growth rate of individuals. Critical removal stress was inversely proportional to coating thickness. Furthermore, individuals with atypical basal plate morphology had a significantly lower critical removal stress than individuals with the typical ("flat") morphology. The data demonstrate that coating thickness is a fundamental factor governing removal of barnacles from silicone coatings.  相似文献   

12.
Raman S  Kumar R 《Biofouling》2011,27(6):569-577
The barnacle exhibits a high degree of control over its attachment onto different types of solid surface. The structure and composition of barnacle cement have been reported previously, but mostly for barnacles growing on low surface energy materials. This article focuses on the strategies used by barnacles when they attach to engineering materials such as polymethylmethacrylate (PMMA), titanium (Ti) and stainless steel 316L (SS316L). Adhesion to these substrata is compared in terms of morphological structure, thickness and functional groups of the primary cement, the molting cycle and the nanomechanical properties of the cement. Structural characterization studies using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in conjunction with nanomechanical characterization and infrared spectroscopy (FTIR) are used to understand the differences in the adhesion of primary barnacle cement to the different substrata. The results provide new insights into understanding the mechanisms at work across the barnacle-substratum interface.  相似文献   

13.
Barnacles have evolved a number of specialized features peculiar for crustaceans: they produce a calcified, external shell; they exhibit sexual strategies involving dioecy and androdioecy; and some have become internal parasites of other Crustacea. The thoroughly sessile habit of adults also belies the highly mobile and complex nature of their larval stages. Given these and other remarkable innovations in their natural history, it is perhaps not surprising that barnacles present a spectrum of opportunities for study. This symposium integrates research on barnacles in the areas of larval biology, biofouling, reproduction, biogeography, speciation, population genetics, ecological genomics, and phylogenetics. Pioneering comparisons are presented of metamorphosis among barnacles from three major lineages. Biofouling is investigated from the perspectives of biochemical and biomechanical mechanisms. Tradeoffs in reproductive specializations are scrutinized through theoretical modeling and empirical validation. Patterns of endemism and diversity are delineated in Australia and intricate species boundaries in the genus Chthamalus are elucidated for the Indo-Pacific. General methodological concerns with population expansion studies in crustaceans are highlighted using barnacle models. Data from the first, draft barnacle genome are employed to examine location-specific selection. Lastly, barnacle evolution is framed in a deep phylogenetic context and hypothetical origins of defined characters are outlined and tested.  相似文献   

14.
A quantitative genetics approach was used to examine variation in the characteristics of the adhesive plaque of the barnacle Balanus amphitrite Darwin attached to two silicone substrata. Barnacles settled on silicone polymer films occasionally form thick, soft adhesive plaques, in contrast to the thin, hard plaques characteristic of attachment to other surfaces. The proportion of barnacles producing a thick adhesive plaque was 0.31 for Veridian, a commercially available silicone fouling-release coating, and 0.18 for Silastic T-2, a silicone rubber used for mold-making. For both materials, significant variation among maternal families in the proportion of barnacles producing a thick adhesive plaque was observed, which suggests the presence of genetic variation, or maternal environmental effects, for this plaque characteristic. For the Veridian coating, barnacles expressing the thick adhesive plaque also exhibited significantly reduced tenacity. This represents the first reported case for potential genetic control of intraspecific phenotypic variation in the physical characteristics and tenacity of the adhesive of a fouling invertebrate.  相似文献   

15.
A number of factors affect the adhesion strength of organisms to fouling-release coatings, and except for a few studies focussing on black or white surfaces none have dealt specifically with the effect of coating colour. The aim was to test the effect of colour on the adhesion strength of the barnacle Elminius modestus. Panels coated in six commercial colours of Intersleek 700® were submerged at two field sites and barnacles were pushed-off using a standard assay procedure. The strength of adhesion (SOA) varied between and within sites for colour and by barnacle basal area, SOA per unit area being higher for smaller barnacles. Higher SOA with a small basal area may be because of size-specific predation, differential hydrodynamic effects or adhesive failure with age. The complex effect of colour on barnacle adhesion may be because of physico-chemical surface characteristics varying with pigments, and their interactions with local environmental conditions, as well as interactions with the settling barnacle larvae.  相似文献   

16.
海洋固着动物分泌的粘胶蛋白在潮湿环境下可以抵御水的阻力而发挥粘性,成为当今生物医学和仿生学领域开发高性能材料的关键候选材料。藤壶作为海洋污损生物之一,通过分泌的藤壶胶可以在水下牢固地附着在不同表面特性的基底材料上。目前,对藤壶的粘附过程已经有了较为深入的了解,但其水下粘附机制尚未特别清晰,还需进一步阐明。为此,本文对藤壶胶及其粘附过程的研究进展进行了综述,介绍了藤壶胶主要粘胶蛋白的研究进展、总结了藤壶胶蛋白的获取方式及其应用,最后提出了可能的研究要点和未来发展方向。  相似文献   

17.
Fouling-release coatings were prepared from blends of a fluorinated/siloxane copolymer with a poly(dimethyl siloxane) (PDMS) matrix in order to couple the low modulus character of PDMS with the low surface tension typical for fluorinated polymers. The content of the surface-active copolymer was varied in the blend over a broad range (0.15–10 wt % with respect to PDMS). X-ray photoelectron spectroscopy depth profiling analyses were performed on the coatings to establish the distribution of specific chemical constituents throughout the coatings, and proved enrichment in fluorine of the outermost layers of the coating surface. Addition of the fluorinated/siloxane copolymer to the PDMS matrix resulted in a concentration-dependent decrease in settlement of barnacle, Balanus amphitrite, cyprids. The release of young plants of Ulva, a soft fouling species, and young barnacles showed that adhesion strength on the fluorinated/siloxane copolymer was significantly lower than the siloxane control. However, differences in adhesion strength were not directly correlated with the concentration of copolymer in the blends.  相似文献   

18.
The mechanical properties of barnacle base plates were measured using a punch test apparatus, with the purpose of examining the effect that the base plate flexural rigidity may have on adhesion mechanics. Base plate compliance was measured for 43 Balanus amphitrite (=Amphibalanus amphitrite) barnacles. Compliance measurements were used to determine flexural rigidity (assuming a fixed-edge circular plate approximation) and composite modulus of the base plates. The barnacles were categorized by age and cement type (hard or gummy) for statistical analyses. Barnacles that were 'hard' (> or =70% of the base plate thin, rigid cement) and 'gummy' (>30% of the base plate covered in compliant, tacky cement) showed statistically different composite moduli but did not show a difference in base plate flexural rigidity. The average flexural rigidity for all barnacles was 0.0020 Nm (SEM +/- 0.0003). Flexural rigidity and composite modulus did not differ significantly between 3-month and 14-month-old barnacles. The relatively low flexural rigidity measured for barnacles suggests that a rigid punch approximation is not sufficient to account for the contributions to adhesion mechanics due to flexing of real barnacles during release.  相似文献   

19.
Silicone-oil additives are often used in fouling-release silicone coatings to reduce the adhesion strength of barnacles and other biofouling organisms. This study follows on from a recently reported active approach to detach barnacles, which was based on the surface strain of elastomeric materials, by investigating a new, dual-action approach to barnacle detachment using Ecoflex®-based elastomers incorporated with poly(dimethylsiloxane)-based oil additives. The experimental results support the hypothesis that silicone-oil additives reduce the amount of substratum strain required to detach barnacles. The study also de-coupled the two effects of silicone oils (ie surface-activity and alteration of the bulk modulus) and examined their contributions in reducing barnacle adhesion strength. Further, a finite element model based on fracture mechanics was employed to qualitatively understand the effects of surface strain and substratum modulus on barnacle adhesion strength. The study demonstrates that dynamic substratum deformation of elastomers with silicone-oil additives provides a bifunctional approach towards management of biofouling by barnacles.  相似文献   

20.
Biofouling, the attachment and growth of organisms on submerged, man-made surfaces, has plagued ship operators for at least 2500 years. Accumulation of biofouling, including barnacles and other sessile marine invertebrates, increases the frictional resistance of ships' hulls, resulting in an increase in power and in fuel consumption required to make speed. Scientists and engineers recognized over 100 years ago that in order to solve the biofouling problem, a deeper understanding of the biology of the organisms involved, particularly with regard to larval settlement and metamorphosis and adhesives and adhesion, would be required. Barnacles have served as an important tool in pursuing this research. Over the past 20 years, the pace of these studies has accelerated, likely driven by the introduction of environmental regulations banning the most effective biofouling control products from the market. Research has largely focused on larval settlement and metamorphosis, the development of new biocides, and materials/surface science. Increased research has so far, however, failed to result in commercial applications. Two recent successes (medetomidine/Selektope?, surface-bound noradrenaline) build on our improving understanding of the role of the larval nervous system in mediating settlement and metamorphosis. New findings with regard to the curing of barnacle adhesives may pave the way to additional successes. Although the development of most current biofouling control technologies remains largely uninfluenced by basic research on, for example, the ability of settling larvae to perceive surface cues, or the nature of the interaction between organismal adhesives and the substrate, newly-developed materials can serve as useful probes to further our understanding of these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号