首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The role of water in determining the structure and stability of biomacromolecules has been well studied. In this work, molecular dynamics simulations have been applied to investigate the effect of surface hydrophobicity on the structure and dynamics of water confined between graphene surfaces. In order to evaluate this effect, we apply various attractive/repulsive water–graphene interaction potentials (hydrophobicity). The properties of confined water are studied by applying a purely repulsive interaction potential between water–graphene (modelled as a repulsive r?12 potential) and repulsive–attractive forces (modelled as an LJ(12-6) potential). Compared to the case of a purely repulsive graphene–water potential, the inclusion of repulsive–attractive forces leads to formation of sharp peaks for density and the number of hydrogen bonds. Also, it was found that repulsive–attractive graphene–water potential caused slower hydrogen bonds dynamics and restricted the diffusion coefficient of water. Consequently, it was found that hydrogen bond breakage and formation rate with the repulsive r?12 potential model, will increase compared to the corresponding water confined with the LJ(12-6) potential.  相似文献   

2.
3.
F. Luo  Y. Su 《Molecular simulation》2013,39(5):391-399
Grand canonical Monte Carlo simulation is used to study the density profiles of Lennard–Jones (LJ) fluid next to a large hard sphere (mimicking a colloidal particle) of various sizes. The LJ fluid in the inhomogeneous system thus maintains equilibrium with the bulk LJ fluid. The chosen density and potential parameters for the bulk fluid correspond to the conditions situated at “dangerous” regions of the phase diagram, i.e. near the critical temperature or close to the gas–liquid coexistence curve. The aim of present extensive simulations is to provide exact data for the broad range of the bulk parameters against which the “universality” of adjustable parameter associated with a perturbation density functional approximation (DFA) can be tested. Here the term “universality” means independence of this parameter on the particular external field responsible for the generation of a non-uniform density profile of the fluid. It is shown that the “universality” of this parameter associated with a third order+second order perturbation DFA holds also in the present case of a large spherical particle as a source of external potential, similarly as established in previous studies dealing with other interaction potential and other external fields [J. Chem. Phys., 122, 064503 (2005); J. Chem. Phys., 123 124708 (2005)]. This DFA can be used as input into a recently proposed framework for the calculation of interparticle potential of mean force (PMF).  相似文献   

4.
As part of a study on the conformation of polynucleotides and nucleic acids the preferred conformations of the model conpound dimethyl phosphate are worked out using potential energy functions. In calculating the total potential energy associated with the conformation, nonbonded, torsional, and electrostatic terms have been considered. The variation of the total conformational energy is represented as a function of two torsion angles ? and ψ which are the rotations about the two phosphoester bonds. The most stable conformations are found to be the gauchegauche conformations about these bonds. The conformations observed for phosphodiesters in the solid state and in the proposed structures of polynucleotides and nucleic acids cluster around the minimum. Also, regions of minimum energy correspond well with the typical allowed regions of a representative dinucleotide.  相似文献   

5.
Abstract

The coexisting densities for an ab-initio model for water have been calculated using grand canonical Monte Carlo simulations with the histogram reweighting technique. Although good agreement with experimental data is found for the radial distribution function at room temperature, the predicted critical density and temperature are well below both the experimental value as well as predictions from semi-empirical potentials. Improvement in the repulsive part of the ab-initio potential is suggested as a way to obtain better agreement with experiment.  相似文献   

6.
The side‐chain dihedral angle distributions of all amino acids have been measured from myriad high‐resolution protein crystal structures. However, we do not yet know the dominant interactions that determine these distributions. Here, we explore to what extent the defining features of the side‐chain dihedral angle distributions of different amino acids can be captured by a simple physical model. We find that a hard‐sphere model for a dipeptide mimetic that includes only steric interactions plus stereochemical constraints is able to recapitulate the key features of the back‐bone dependent observed amino acid side‐chain dihedral angle distributions of Ser, Cys, Thr, Val, Ile, Leu, Phe, Tyr, and Trp. We find that for certain amino acids, performing the calculations with the amino acid of interest in the central position of a short α‐helical segment improves the match between the predicted and observed distributions. We also identify the atomic interactions that give rise to the differences between the predicted distributions for the hard‐sphere model of the dipeptide and that of the α‐helical segment. Finally, we point out a case where the hard‐sphere plus stereochemical constraint model is insufficient to recapitulate the observed side‐chain dihedral angle distribution, namely the distribution P3) for Met. Proteins 2014; 82:2574–2584. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Abstract

The Hel UV photoelectron spectrum of trimethyl phosphate (TMP) has been measured and interpreted with the aid of SCF molecular orbital calculations carried out with STO-3G, STO-3G* and 4–31G basis functions. The photoelectron spectrum of TMP is more accurately reproduced by results from 4–31G calculations than by results from STO-3G or STO-3G* calculations. However, all three basis sets yield results which predict the same assignment of the photoelectron spectrum. Results at the 4–31G level indicate that whether calculations are based on crystallographic bond angles and bond lengths or on STO-3G optimized geometries has little effect on the energetic ordering of the upper occupied orbitals. The energetic ordering of orbitals is also found to be only weakly dependent upon the torsional angle φ, describing rotation of ester groups about P-O bonds and upon the torsional angle ψ, describing rotation of methyl groups about C-O bonds. For trimethyl phosphate, with C3 symmetry, the vertical ionization potentials of the upper occupied orbitals are 10.81 eV (8e), 11.4 eV (9a), 11.93 eV (7e), 12.6–12.9 eV (8a and 6e), 14.4 eV (7a) and 15.0–16.0 eV(5e and 6a). Calculations at the 4–31G level indicate that many of the highest occupied orbitals in neutral dimethyl phosphate and methyl phosphate have energies and electron distributions similar to orbitals in TMP.

For TMP, a search for optimized values of φ and ψ has been carried out at the STO-3G* level. In agreement with previous NMR studies and with classical potential calculations, the STO- 3G* results indicate that both the gauche φ= 53.1 °) and anticlinal (φ = 141.9°) conformations are thermally accessible. Also in agreement with the classical potential calculations, the STO-3G* results predict that in the all gauche conformation energy is minimized when the methyl groups assume a staggered geometry (ψ= 60° to 80°) and that an energy maximum occurs for an eclipsed geometry (ψ = 0° to 20°). A study of the dependence of optimized values of O-P-O ester bond angles on the torsional angles, φ, was carried out at the STO-3G, STO-3G* and 4–31G levels. The results demonstrate that for C3 symmetry, the coupling of O-P-O angles to φ is influenced by repulsive steric interactions.  相似文献   

8.
Wilma K. Olson 《Biopolymers》1975,14(9):1797-1810
The dependence of the unperturbed dimensions of randomly coiling polynucleotides on the rotations about the phosphodiester linkages of the chain has been examined in order to understand the conformational discrepancies, set forth in paper I, regarding these angles (ω′ and ω). Large values of the characteristic ratio 〈r20/nl2 , which agree with the experimental behavior of the chain, are obtained only if a sizeable proportion of the polymer residues have trans ω′ values. The asymmetric torsional potential that is believed to arise from gauche effects associated with the P-O bonds has been approximated using a hard core model. The calculated characteristic ratio exhibits a strong dependence upon the magnitude of this torsional barrier (separating trans and gauche conformations) and shows agreement with experimental values for polyribonucleotides only if this energy difference is 1 kcal/mol or less.  相似文献   

9.
10.
Abstract

We present new results for thermodynamic properties and viscosities of pure dumbbell fluids, spherical/dumbbell mixtures, and dumbbell/dumbbell mixtures. It is evident that the interaction between dumbbell molecules is less attractive than that between spherical molecules which leads to lower viscosities. The shear viscosities and the LJ energies of both spherical Ar/dumbbell Kr (case B) and dumbbell Ar/dumbbell Kr (case C) are described quite well by the liquid mixture expression. The ideality in case C is much better than in case B which is consistent with the idea that dumbbell/dumbbell mixtures are likely to be more ideal than spherical/dumbbell mixtures. But the mixture pressures of the spherical/dumbbell mixture (case B) are described accurately by the ideal liquid mixture expression while those of the dumbbell/dumbbell mixture (case C) are not, which is not consistent with the better ideality of case C in the shear viscosity and the LJ energy than case B.  相似文献   

11.
12.
The stereodynamics for H++HD and its isotopic variant D++HD were studied with a quasi-classical trajectory (QCT) method at a collision energy of 0.7 eV on the ground 11A′ potential energy surface (PES). The polarization-dependent differential cross-sections (PDDCSs) in the center-of-mass frame are presented here. Furthermore, the distribution of the angle between k and j′, p(θ r ) and the distribution of the dihedral angle p(ϕ r ) were calculated and are discussed. The results indicate that isotopic substitution exerts substantial effects on the differential cross-section and the product’s rotational polarization.  相似文献   

13.
Proton magnetic resonance data and conformational calculations of a series of model compounds containing a NH-CαH group substituted as in peptides have been used to generate a proton–proton coupling constant–dihedral angle relation for the peptide unit. For those substances used in which the dihedral angle about the N-Cα bond is not fixed, the angle distribution was calculated from conformational theory. Using eight examples in which the number of theoretical assumptions were least, the best values of the coefficients A, B, and C in the expression J(θ) = Acos2θ + B cosθ + Csin2θ were found by a least-squares procedure to be 7.9, ?1.55, and 1.35, respectively. This relation gives reasonable values for the dihedral angles ? in cyclic oligopeptide structures for which the availability of both NMR data and other structural information allow comparison. When applied to N-acetylamino acid N-methylamides having side chains extending beyond Cβ, however, agreement with the calculated conformational distribution was found for Leu, Met, and Trp, but observed values of J were larger than expected for Val, He, Phe, and Tyr, These disagreements are considered to be the result of interactions not yet taken into account in the usual conformational calculations.  相似文献   

14.
Abstract

Some liquid metals can be regarded as a binary mixture of ions and electrons interacting via binary interparticle interactions with each other. It is shown exactly on the basis of the density-functional method that a liquid metal can be taken as a quasi one-component system only via a pairwise interatomic interaction (without a many-body force) to obtain the radial distribution function, provided that a liquid metal can be thought of as an ion-electron mixture with binary interactions.  相似文献   

15.
Summary A statistical mechanical treatment of the fluidity of lipid hydrocarbon chains in phospholipid bilayers is presented, which explicitly takes some account of interchain steric restrictions. With an effective energy separation of 750 cal/mole betweengauche andtrans conformations, it is found possible to account both for the chain dependence of the entropy and enthalpy change at the liquid crystalline transition of saturated lecithins, and also for intensity data in the laser raman spectra of dipalmitoyl lecithin. The method is used to calculate conformational probabilities in the lipid chains, in particular those for 2g 1 kinks. The calculated kink concentrations are found to be in agreement with the molecular permeability theory of H. Träuble (J Membrane Biol. 4:193, 1971).  相似文献   

16.
Vincent Madison 《Biopolymers》1977,16(12):2671-2692
A survey of over 50 crystal structures indicates that both imino acid and peptide derivatives of proline populate ring conformers consistent with the torsional potentials about single bonds. In both cases, lower barriers for rotation about C? N bonds relative to those about C? C bonds favor smaller values for dihedral angles about the former bonds. In peptides a minimum in the torsional potential about C? N bonds occurs at zero dihedral angle, further favoring small angles. The pyrrolidine-ring dihedral angles of the proline compounds in the solid state obey a cyclopentane-type pseudorotation function. Thus the puckering of the five-membered ring can be quantitatively described by two parameters. Consistent with small dihedral angles about C? N bonds, Cβ and/or Cγ are puckered out of the mean plane of the ring in nearly all of the nonstrained compounds. Utilizing the consistent force-field method of Lifson and coworkers [see A. Warshel, M. Levitt, and S. Lifson (1970) J. Mol. Spectrosc. 33 , 84] the intramolecular energy of five proline peptides was minimized with respect to all internal coordinates. In addition, the energy surface near minima was explored by constraining a particular dihedral angle and reminimizing the energy with respect to all remaining variables. In linear peptides two types of pyrrolidine-ring conformers have identical predicted energies. In the cyclic dipeptide cyclo (Pro-Gly) one of the ring conformers is favored by about 3 kcal/mol, while the cyclic tripeptide cyclo(Pro-Gly-Gly) favors the other conformer by a comparable margin. In agreement with observations in the solid state and in solution, Cβ and/or Cγ are puckered in the predicted conformers. A correlation between proline Φ and the details of the puckered conformation was predicted and found to match precisely conformers observed in crystals. For the diamides N-acetyl-L -proline-N′-methyl-amide and N-acetyl-L -proline-N′,N′-dimethylamide (AcProMe2A) 30% and 60% cis acetyl peptide bonds were predicted in good agreement with observations in nonpolar solvents for the respective compounds. The conformational distributions with respect to proline Ψ are also in accord with experimental observations. For AcProMe2A, a model for a -Pro-Pro-sequence in a peptide chain, this study is the first to predict stable conformers for proline Ψ either ca. ?50° or 140° for both cis and trans peptides.  相似文献   

17.
Abstract

We have applied the image approximation to the reaction field as suggested by H.L. Friedman [Mol. Phys., 29, 1533 (1975)] by investigating appropriate cavity sizes and system parameters for use in molecular simulations. The energy of and the structure around a central simple point charge (SPC) water molecule in a dielectric cavity was found to be in good agreement with the properties of a liquid sample. To confine the water molecules within the cavity, we introduced a short-range repulsion between a real charge and its image as the Lennard-Jones repulsive potential between oxygen atoms of the SPC potential. For a system of 65 water molecules a cavity radius of 10.45 Å is appropriate; this radius is altered to 12.00 Å for a cavity surrounding 113 molecules. The effect of the boundary is restricted to the outer-most water layer which is in contact with the dielectric continuum.  相似文献   

18.
Variations of the shape and polarity of the DNA grooves caused by changes of the DNA conformation play an important role in the DNA readout. Despite the fact that non-canonical trans and gauche- conformations of the DNA backbone angle γ (O5′–C5′–C4′–C3′) are frequently found in the DNA crystal structures, their possible role in the DNA recognition has not been studied systematically. In order to fill in this gap, we analyze the available high-resolution crystal structures of the naked and complexed DNA. The analysis shows that the non-canonical γ angle conformations are present both in the naked and bound DNA, more often in the bound vs. naked DNA, and in the nucleotides with the A-like vs. the B-like sugar pucker. The alternative angle γ torsions are more frequently observed in the purines with the A-like sugar pucker and in the pyrimidines with the B-like sugar conformation. The minor groove of the nucleotides with non-canonical γ angle conformation is more polar, while the major groove is more hydrophobic than in the nucleotides with the classical γ torsions due to variations in exposure of the polar and hydrophobic groups of the DNA backbone. The propensity of the nucleotides with different γ angle conformations to participate in the protein–nucleic acid contacts in the minor and major grooves is connected with their sugar pucker and sequence-specific. Our findings imply that the angle γ transitions contribute to the process of the protein–DNA recognition due to modification of the polar/hydrophobic profile of the DNA grooves.  相似文献   

19.
Brassinosteroid (BR)-induced rice (Oriza sativa L.) lamina joint (RLJ) inclination and its relationship to indole-3-acetic acid (IAA) and ethylene were investigated using BR isolated from beeswax. The effect of BR on RLJ inclination was time- and concentration-dependent. Etiolated lamina were more sensitive to BR than green lamina. The BR-induced inclination was accompanied by increased lamina fresh weight, total water content, free-water content, proton extrusion and ethylene production, and decreased bound-water content. Lamina dry weight was not changed. The inclination was due to greater expansion of the adaxial cells relative to the dorsal cells in the lamina joint. This response was caused by BR and/or BR-induced signal(s) that were transported from the leaf sheath to the leaf blade. Both BR-induced RLJ inclination and ethylene production were inhibited by cobalt chloride (CoCl2), an inhibitor of ACC oxidase. BR-induced inclination was much higher than that of IAA, and was inhibited by high concentration of 2,3,5-triiodobenzoic acid (TIBA), an inhibitor of IAA transport. A synergistic effect was observed between BR and IAA. These results suggest that the effects of BR on RLJ inclination and pulvinus cell expansion may be resulted from BR-increased water potential and proton extrusion in the lamina. The BR-induced RLJ inclination may involve the action of ethylene but may be independent of IAA.Abbreviations BR brassinolide or brassinosteroid(s) - IAA indole-3-acetic acid - TIBA 2,3,5-triiodobenzoic acid - RLJ rice lamina joint  相似文献   

20.
We perform an ab initio analysis of the photoisomerization of the protonated Schiff base of retinal (PSB-retinal) from 11-cis to 11-trans rotating the C10-C11=C12-C13 dihedral angle from 0° (cis) to -180° (trans). We find that the retinal molecule shows the lowest rotational barrier (0.22 eV) when its charge state is zero as compared to the barrier for the protonated molecule which is ∼0.89 eV. We conclude that rotation most likely takes place in the excited state of the deprotonated retinal. The addition of a proton creates a much larger barrier implying a switching behavior of retinal that might be useful for several applications in molecular electronics. All conformations of the retinal compound absorb in the green region with small shifts following the dihedral angle rotation; however, the Schiff base of retinal (SB-retinal) at trans-conformation absorbs in the violet region. The rotation of the dihedral angle around the C11=C12 π-bond affects the absorption energy of the retinal and the binding energy of the SB-retinal with the proton at the N-Schiff; the binding energy is slightly lower at the trans-SB-retinal than at other conformations of the retinal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号