首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nanomechanical properties, deformation, and shape recovery mechanism of NiTi nanowires (NWs) under torsion are studied using molecular dynamics simulations. The effects of loading rate, aspect ratio of NWs, and NW shape are evaluated in terms of atomic trajectories, potential energy, torque required for deformation, stress, shear modulus, centro-symmetry parameter, and radial distribution function. Simulation results show that dislocation nucleation starts from the surface and then extends to the interior along the {110} close-packed plane. For a high loading rate, the occurrence of torsional buckling of a NW is faster, and the buckling gradually develops near the location of the applied external loading. The critical torsional angle and critical buckling angle increase with aspect ratio of the NWs. Square NWs have better mechanical strength than that of circular NWs due to the effect of shape. Shape recovery naturally occurs before buckling.  相似文献   

2.
The plastic response of perfect face-centred cubic single-crystal aluminium (Al) nanowires (NWs) under torsion is studied using molecular dynamics simulations. The Al–Al interaction is described by the many-body tight-binding potential. The effects of the crystal orientation and aspect ratio of the NWs on their deformation are evaluated in terms of atomic trajectories, potential energy, a centrosymmetry parameter and the torque required for deformation. Simulation results clearly show that for NWs, regardless of crystal orientation, dislocations nucleate and propagate on the (1 1 1) close-packed plane. In a NW under torsion, dislocations begin at the surface, extend to the interior along the (1 1 1) close-packed plane and finally diffuse to the middle part. A 〈1 1 0〉-oriented NW has the lowest required torque for deformation due to the occurrence of homogeneous deformation. The mechanism of the plastic response of an Al NW depends on its crystal orientation. For a long NW, geometry instability occurs before material instability (buckling).  相似文献   

3.
ABSTRACT

Atomistic simulations are used to investigate the mechanical properties of silver nanowires (NWs) with kinked twin boundaries (TBs) under tensile loading. For comparison, a different ledge width of twinned NWs with both square and circular kink-steps are considered in this study. The embedded-atom-method potential is employed to describe the atomic interactions. To identify the defect evolution and incipient plastic deformation mechanism, the centrosymmetry parameter is implemented in our self-developed programme. Twinned NWs with both square and circular ledges are shown to have a reduced impact on yield stress as compared to their perfect TBs counterpart models in elastic deformation. In twinned NWs with rectangular ledges, a strain-hardening effect was observed in defective NWs. The incipient plastic deformation is influenced by the ledge width. While in twinned NWs with circular ledges, the ledges rather than the surface effect are the only dislocation source in their incipient plastic deformation. Our findings offer a view of imperfection in twinned NWs, and it is believed that the attention being paid to defective TBs will be helpful to further understanding of the mechanical properties of TB-strengthened NWs.  相似文献   

4.
ABSTRACT

In this work, the plastic deformation mechanisms and fracture toughness of nanotwinned γ-TiAl with different twin boundary (TB) spacing are investigated by using molecular dynamics simulation. The simulation results reveal that there are pronounced shifts in the mechanical behaviour of nanotwinned γ-TiAl when the TB spacing is 3.50, 4.20 and 4.90?nm. In addition, the variation of the dislocation density with strain at these three TB spacing illustrates that a smaller TB spacing induces a higher dislocation density. Different TB spacing has an influence on the dislocation behaviour. The dislocation pile-up, dislocation–dislocation, dislocation–twin and twin–twin reactions, hierarchical twins including their generation and density, step formation, dislocation emission from steps and TB migration are the main plastic deformation mechanisms. The results also show that TB migration, twinning formation and interaction of crack and TB dominate the deformation mechanism of nanotwinned γ-TiAl with crack. The generation of hierarchical twins, lower distance between crack surface plane and twin plane, dislocation–twin, twin–twin interaction and crack deflection increase the fracture toughness of nanotwinned γ-TiAl.  相似文献   

5.
In this present study, deformation behaviour of Mo20W20Co20Ta20Zr20 high entropy alloy (HEA) coated single crystal (SC) nickel (Ni) subjected to nanoindentation test have been investigated to study the mechanical properties and underlying mechanism during nanoindentation test using molecular dynamics (MD) simulation with embedded atom method (EAM) potential. Centro-Symmetry Parameter (CSP) Analysis and Radial Distribution Function (RDF) plots are obtained to get insight of structural evolution during nanoindentation and thereby determine the underlying physics of deformation. During nanoindention test Stacking faults (SFs) formation, dislocation generation, dislocation loops, Lomer–Cottrell (LC) lock and Hirth lock formation due to dislocation-dislocation interaction are observed. At higher indentation depth, formation of dislocation loops is augmented, which indicates nanoindentation deformation is found to be Stacking Fault dominated deformation. The accumulation and relaxation of shear stress near indenter tip at the time of deformation process under nanoindentation test causes the variation of dislocation density, strain hardening, and plastic deformation, which is influenced by the formation of dislocation barriers (LC and Hirth locks) and dislocation loops (shear and prismatic loops).  相似文献   

6.
The plastic deformation of nanocrystalline Ag, with columnar grains, has been studied by molecular dynamics simulations. The nanocrystalline systems show two types of deformation mechanisms. One is the split of grain boundary that occurs before the activation of the dislocation in nanocrystalline Ag, and almost no dislocation debris and twins are left in the grains. Moreover, split of grain boundary is shown between the grains of nanocrystalline Ag. Another mechanism consists in partial dislocations dominating the process of plastic deformation. Plenty of stacking faults and twins remain in the grains of nanocrystalline Ag. It is revealed that different grain aspect ratios have induced the difference in deformation mechanisms of nanocrystalline Ag. When the grain aspect ratio is less than or equal to 1, the process of plastic deformation is dominated by partial dislocations. Otherwise, the process is dominated by split of grain boundary. The grain aspect ratio is the height in z direction to length in x direction ratio, which was found to noticeably impact yield strength, grain coarsening, indicating that the observed behaviour should have contributed to the plastic deformation significantly.  相似文献   

7.
ABSTRACT

Tensile and creep properties of dissimilar cold weld joints (Al (metal)–Cu50Zr50 (metallic glass)) are investigated using molecular dynamics simulations. Embedded atom method potential is used to model the interactions between Al–Cu–Zr atoms. Cold welding is carried out at three different velocities (20, 30 and 40?m/s) and for three interferences (0.4, 1.3 and 2.3?nm). The strength of the welded joints is measured using the tensile test carried out at a strain rate of 1.5 × 109/s. Structure studies by radial distribution function analysis indicate amorphisation of Al in the weld regions. Tensile studies show that the maximum strength is obtained in the sample that is welded for 1.3?nm interference. Creep studies carried out over range of stresses (200–350?MPa) and temperatures (200–500?K) show very short primary creep and significant steady-state creep. The stress exponent n has two values; at lower stress, n?=?1.2, and at higher stress, n?=?4.06, respectively. The deformation mechanisms are observed to be slip by Shockley partial dislocation and by twinning in Al region. The icosahedral cluster population in metallic glass decreases as the temperature increases and contributes to large plastic strain.  相似文献   

8.
Molecular dynamics (MD) simulations are applied to elucidate the anisotropic characteristics in the material responses for crystallographic nickel substrates with (100), (110) and (111) surface orientations during nanoindentation, compensating for the experimental limitation of nanoindentation—particularly for pure nickel substrates of three crystallographic orientations. This study examines several factors under indentation: three-dimensional phases of plastic deformation which correspond to atomic stress distributions, pile-up patterns at maximum indentation depth, and extracted material properties at different crystallographic orientations. The present results reveal that the strain energy of the substrate exerted by the tip is stored by the formation of the homogeneous nucleation, and is dissipated by the dislocation sliding of the {111} plane. The steep variations of the indentation curve from the local peak to the local minimums are affected by the numbers of slip angle of {111} sliding plane. The pile-up patterns of the three nickel substrates prove that the crystalline nickel materials demonstrate the pile-up phenomenon from nanoindentation on the nano-scale. The three crystallographic nickel substrates exhibit differing amounts of pile-up dislocation spreading at different crystallographic orientations. Finally, the effects of surface orientation in material properties of FCC nickel material on the nano-scale are observable through the slip angle numbers of {111} sliding planes which influence hardness values, as well as the cohesive energy of different crystallographic surfaces that indicate Young's modulus.  相似文献   

9.
Nanoindentation techniques recently developed to measure the mechanical response of crystals under external loading conditions reveal new phenomena upon decreasing sample size below the microscale. At small length scales, material resistance to irreversible deformation depends on sample morphology. Here we study the mechanisms of yield and plastic flow in inherently small crystals under uniaxial compression. Discrete structural rearrangements emerge as a series of abrupt discontinuities in stress-strain curves. We obtain the theoretical dependence of the yield stress on system size and geometry and elucidate the statistical properties of plastic deformation at such scales. Our results show that the absence of dislocation storage leads to crucial effects on the statistics of plastic events, ultimately affecting the universal scaling behavior observed at larger scales.  相似文献   

10.
Muddy sediments are elastic solids through which morphologically diverse animals extend burrows by fracture. Muddy sediments inhabited by burrowing infauna vary considerably in mechanical properties, however, and at high enough porosities, muds can be fluidized. In this study, we examined burrowing behaviors and mechanisms of burrow extension for three morphologically diverse polychaete species inhabiting soft muddy sediments. Worms burrowed in gelatin, a transparent analog for muddy sediments, and in natural sediments in a novel viewing box enabling visualization of behaviors and sediment responses. Individuals of Scalibregma inflatum and Sternaspis scutata can extend burrows by fracture, but both also extended burrows by plastic deformation and by combinations of fracture and plastic deformation. Mechanical responses of sediments corresponded to different burrowing behaviors in Scalibregma; direct peristalsis was used to extend burrows by fracture or a combination of plastic deformation and fracture, whereas a retrograde expansive peristaltic wave extended burrows by plastic deformation. Burrowing speeds differed between behaviors and sediment mechanical responses, with slower burrowing associated with plastic deformation. Sternaspis exhibited less variability in behavior and burrowing speed but did extend burrows by different mechanisms consistent with observations of Scalibregma. Individuals of Ophelina acuminata did not extend burrows by fracture; rather individuals plastically deformed sediments similarly to individuals of the related Armandia brevis. Our results extend the range of natural sediments in which burrowing by fracture has been observed, but the dependence of burrow extension mechanism on species, burrowing behavior, and burrowing speed highlights the need for better understanding of mechanical responses of sediments to burrowers.  相似文献   

11.
The effects of temperature and size on the welding of Au nanowires (NWs) into T junctions is studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. Simulation results show that when the top NW approaches the bottom one, it elongates towards the bottom one just before welding due to the interaction of the van der Waals attractive force. During welding, the bottom NW gradually reaches critical bend deformation through successive pressure applied from the top one, followed by buckling of the top NW. The structural order of NWs significantly decreases with increasing welding temperature or decreasing NW width. Welding at high temperatures (700 K or above) causes alignment difficulty due to an unstable NW geometry or even welding failure due to a decrease in NW length. Smaller NWs have larger stress during the welding process.  相似文献   

12.
The multiaxial stress of turgor pressure was stimulated in vitro by inflating isolated Nitella cell walls with mercury. The initial in vitro extension at pH 6.5, 5 atmospheres pressure, returned the wall approximately to the in vivo stressed length, and did not induce any additional extension during a 15-minute period. Upon release of pressure, a plastic deformation was observed which did not correlate with cell growth rates until the final stages of cell maturation. Since wall plasticity does not correlate with growth rate, a metabolic factor(s) is implicated. Walls at all stages of development exhibited a primary yield stress between 0 and 2 atmospheres, while rapidly growing cells (1-3% per hour) exhibited a secondary yield stress of 4 to 5 atmospheres. The creep rate and plastic deformation of young walls were markedly enhanced by acid buffers (10 millimolar, pH ≤ 5.3).  相似文献   

13.
At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress.  相似文献   

14.
The green alga Chlorella sp. (strain 2350) was found to accumulate proline, up to a maximum of 0.027 fmol·cell−1, under stressful concentrations of cupric ions. The function of the accumulated proline was studied with respect to its effect on copper (Cu) uptake. By induction with salt stress, cells with various levels of intracellular proline were used for this study. It is shown that the amount of Cu taken up by the cells was reduced when the intracellular proline levels were enhanced. When proline was exogenously supplied prior to Cu treatment, the adsorption of Cu was markedly reduced. When exogenous proline was supplied after Cu treatment, it resulted in a remarkable desorption of the adsorbed Cu immediately after the addition of proline. The results of the present study indicate that proline may exert some action on the cell surface and suggest that one function of accumulated proline is to reduce the uptake of metal ions. The accumulation of proline may be related to a tolerance mechanism for dealing with Cu stress.  相似文献   

15.
In this study, the thermal stress distribution in cryosurgery of kidney was investigated using a multiphysics finite element model developed in ANSYS (V8.1). The thermal portion of the model was verified using experimental data and the mechanics portion of the model (elastic) was verified using classic analytical solutions. Temperature dependent thermal and mechanical properties were used in the model. Moreover, the model accounts for thermal expansion due to both thermal expansion in single phase and volumetric expansion associated with phase change of tissue water to ice. For a clinical cylindrical cryoprobe inserted into the renal cortex from the top-middle renal capsule, it was found that the thermal stress distributions along the radial position are very different at different depths from the top renal capsule. The thermal stress is much higher at both ends than in the middle of the cryoprobe surface. It was found that there might be more tissue next to the top renal capsule than other region undergoing microcrack formation or plastic deformation. Furthermore, it was found that macrocrack formation is more likely to occur in tissue adjacent to the cryoprobe surface (especially on the sharp point tip) and during the thawing phase of cryosurgery. It was further found that the volumetric expansion associated with phase change induced much higher thermal stress than thermal expansion in a single phase and might therefore be the main cause of the frequently observed crack formation shortly after initiation of thawing in cryosurgery. Because the thermal stress adjacent to the cryoprobe is much higher than the yield stress of frozen renal tissue, a plastic stress model is required for better modeling of the thermal stress distribution in cryosurgery of kidney in future. However the computational effort will then be drastically increased due to the strong nonlinear nature of the plastic model and more experimental studies are indispensable for better understanding of the mechanical behavior of frozen tissue in cryosurgery.  相似文献   

16.
The primary capillary plexus in early yolk sacs is remodeled into matured vitelline vessels aligned in the direction of blood flow at the onset of cardiac contraction. We hypothesized that the influence of fluid shear stress on cellular behaviors may be an underlying mechanism by which some existing capillary channels remain open while others are closed during remodeling. Using a recently developed E-Tmod knock-out/lacZ knock-in mouse model, we showed that erythroblasts exhibited rheological properties similar to those of a viscous cell suspension. In contrast, the non-erythroblast (NE) cells, which attach among themselves within the yolk sac, are capable of lamellipodia extension and cell migration. Isolated NE cells in a parallel-plate flow chamber exposed to fluid shear stress, however, ceased lamellipodia extension. Such response may minimize NE cell migration into domains exposed to fluid shear stress. A two-dimensional mathematical model incorporating these cellular behaviors demonstrated that shear stress created by the blood flow initiated by the embryonic heart contraction might be needed for the remodeling of primary capillary plexus.  相似文献   

17.
A new experimental method, called the ‘hole filling method’, is proposed to simulate the healing of internal cracks in rolled workpieces. Based on the experimental results, the evolution in the microstructure, in terms of diffusion, nucleation and recrystallisation were used to analyze the crack healing mechanism. We also validated the phenomenon of segmented healing. Internal crack healing involves plastic deformation, heat transfer and an increase in the free energy introduced by the cracks. It is proposed that internal cracks heal better under high plastic deformation followed by slow cooling after rolling. Crack healing is controlled by diffusion of atoms from the matrix to the crack surface, and also by the nucleation and growth of ferrite grain on the crack surface. The diffusion mechanism is used to explain the source of material needed for crack healing. The recrystallisation mechanism is used to explain grain nucleation and growth, accompanied by atomic migration to the crack surface.  相似文献   

18.
Fluid mechanical shear stress elicits humoral, metabolic, and structural responses in vascular endothelial cells (ECs); however, the mechanisms involved in shear stress sensing and transduction remain incompletely understood. Beyond being responsive to shear stress, ECs distinguish among and respond differently to different types of shear stress. Recent observations suggest that endothelial shear stress sensing may occur through direct interaction of the flow with cell-surface structures that act as primary flow sensors. This paper presents a mathematical model for the shear stress-induced deformation of a flow sensor on the EC surface. The sensor is modeled as a cytoskeleton-coupled viscoelastic structure exhibiting standard linear solid behavior. Since ECs respond differently to different types of flow, the deformation and resulting velocity of the sensor in response to steady, non-reversing pulsatile, and oscillatory flow have been studied. Furthermore, the sensitivity of the results to changes in various model parameters including the magnitude of applied shear stress, the constants that characterize the viscoelastic behavior, and the pulsatile flow frequency (f) has been investigated. The results have demonstrated that in response to a suddenly applied shear stress, the sensor exhibits a level of instantaneous deformation followed by gradual creeping to the long-term response. The peak deformation increases linearly with the magnitude of the applied shear stress and decreases for viscoelastic constants that correspond to stiffer sensors. While the sensor deformation depends on f for low f values, the deformation becomes f -independent above a critical threshold frequency. Finally, the peak sensor deformation is considerably larger for steady and non-reversing pulsatile flow than for oscillatory flow. If the extent of sensor deformation correlates with the intensity of flow-mediated endothelial signaling, then our results suggest possible mechanisms by which ECs distinguish among steady, non-reversing pulsatile, and oscillatory shear stress.  相似文献   

19.
The interaction of edge dislocations in a two-dimensional (2D) model crystal subjected to “simple shear” is studied using molecular statics simulations. An initial point defect is introduced in the model to trigger the dislocation activities in a controlled manner. We consider dislocations gliding towards one another on parallel slip planes separated by various distances. The overall load-displacement response of the crystal is obtained from the simulations, which can be correlated with the nano-scale atomistic mechanisms. Although the crystal is inherently anisotropic, the incipient dislocation plasticity is such that slip is parallel to the primary shear direction as clearly demonstrated in this work. It is also illustrated that dislocation annihilation, as well as dislocation encounter which leaves behind a point defect, can be unambiguously modeled. Throughout the deformation history, more dislocations capable of gliding in the crystal tend to generate a weaker mechanical response and more pronounced plasticity. The present study also offers mechanistic insight into experimentally observed small-scale crystal plasticity.  相似文献   

20.
Polarized one- and two-dimensional infrared spectra were obtained from the epidermis of onion (Allium cepa) under hydrated and mechanically stressed conditions. By Fourier-transform infrared microspectroscopy, the orientation of macromolecules in single cell walls was determined. Cellulose and pectin exhibited little orientation in native epidermal cell walls, but when a mechanical stress was placed on the tissue these molecules showed distinct reorientation as the cells were elongated. When the stress was removed the tissue recovered slightly, but a relatively large plastic deformation remained. The plastic deformation was confirmed in microscopic images by retention of some elongation of cells within the tissue and by residual molecular orientation in the infrared spectra of the cell wall. Two-dimensional infrared spectroscopy was used to determine the nature of the interaction between the polysaccharide networks during deformation. The results provide evidence that cellulose and xyloglucan associate while pectin creates an independent network that exhibits different reorientation rates in the wet onion cell walls. The pectin chains respond faster to oscillation than the more rigid cellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号