首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a kinetic Monte Carlo molecular simulation procedure to calculate the Helmholtz free energy, the entropy and the chemical potentials of all components in a bulk fluid mixture. This allows us to derive the excess properties (volume, free energy and entropy) resulting from the mixing of homogeneous fluids of pure components at constant temperature and pressure. We have chosen neon–xenon mixtures to illustrate our method because of the large difference in collision diameter and well-depth of the interaction energy. When xenon is predominant in the mixture, the volume of mixing is larger. The excess entropy of mixing correlates with the volume of mixing, since a positive excess volume enables more configurations (more possible molecular distributions). The excess thermodynamic quantities as functions of the total density were found to be insensitive to temperature. To investigate the effects of the molecular parameters, we also studied argon–nitrogen and argon–krypton mixtures. The effect of the difference in molecular parameters is in the order: argon–nitrogen < argon–krypton < neon–xenon. A large difference in the well-depth of the interaction energies results in an increase in the excess thermodynamic variables, which is in agreement with the literature McDonald IR. NpT-ensemble Monte Carlo calculations for binary liquid mixtures. Mol Phys. 1972;23(1):41–58; Singer JVL, Singer K. Monte Carlo calculation of thermodynamic properties of binary mixtures of Lennard-Jones (12-6) liquids. Mol Phys. 1972;24(2):357–390.  相似文献   

2.
An optimized potential function for base-stacking interaction is constructed. Stacking energies between the complementary pairs of a dimer are calculated as a function of the rotational angle and separation distance. Using several different sets of atomic charges, the electrostatic component in the monopole-monopole approximation (MMA) is compared to the more refined segmented multipole–multipole representation (SMMA); the general features of the stacking minima are found to be correctly reproduced with IEHT or CNDO atomic charges. The electrostatic component is observed to control the location of stacking minima. The MMA, in general, is not a reliable approximation of the SMMA in regions away from minima; however, the MMA is reliable in predicting the location and nature of stacking minima. The attractive part of the Lennard-Jones 6–12 potential is compared to and parameterized against the expression for the second-order interaction terms composed of multipole-bond polarizability for the polarization energy and transition-dipole bond polarizabilities for approximation of the dispersion energy. The repulsive part of the Lennard-Jones potential is compared to a Kitaygorodski-type repulsive function; changing the exponent from its usual value of 12 to 11.7 gives significantly better agreement with the more refined repulsive function. Stacking minima calculated with the optimized potential method are compared with various perturbation-type treatments. The optimized potential method yields results that compare as well with melting data as do any of the more recent and expensive perturbation methods.  相似文献   

3.
4.
Glucosamine-6-phosphate synthase (GlmS) catalyzes the formation of D-glucosamine 6-phosphate from D-fructose 6-phosphate using L-glutamine as the ammonia source. Because N-acetylglucosamine is an essential building block of both bacterial cell walls and fungal cell wall chitin, the enzyme is a potential target for antibacterial and antifungal agents. The most potent carbohydrate-based inhibitor of GlmS reported to date is 2-amino-2-deoxy-D-glucitol 6-phosphate, an analogue of the putative cis-enolamine intermediate formed during catalysis. The interaction of a series of structurally related cis-enolamine intermediate analogues with GlmS is described. Although arabinose oxime 5-phosphate is identified as a good competitive inhibitor of GlmS with an inhibition constant equal to 1. 2 (+/-0.3) mM, the presence of the amino function at the 2-position is shown to be important for potent inhibition. Comparison of the binding affinities of 2-deoxy-D-glucitol 6-phosphate and 2-amino-2-deoxy-D-glucitol 6-phosphate indicates that the amino function contributes -4.1 (+/-0.1) kcal/mol to the free energy of inhibitor binding. Similarly, comparison of the binding affinities of 2-deoxy-D-glucose 6-phosphate and D-glucosamine 6-phosphate indicates that the amino function contributes -3.0 (+/-0.1) kcal/mol to the free energy of product binding. Interactions between GlmS and the 2-amino function of its ligands contribute to the uniform binding of the product and the cis-enolamine intermediate as evidenced by the similar contribution of the amino group to the free energy of binding of D-glucosamine 6-phosphate and 2-amino-2-deoxy-D-glucitol 6-phosphate, respectively.  相似文献   

5.
6.
A comprehensive molecular dynamics simulation study of n-alkanes using the optimized potential for liquid simulation with all-atoms (OPLS-AA) force field at ambient condition has been performed. Our results indicate that while simulations with the OPLS-AA force field accurately predict the liquid state mass density for n-alkanes with carbon number equal or less than 10, for n-alkanes with carbon number equal or exceeding 12, the OPLS-AA force field with the standard scaling factor for the 1–4 intramolecular Van der Waals and electrostatic interaction gives rise to a quasi-crystalline structure. We found that accurate predictions of the liquid state properties are obtained by successively reducing the aforementioned scaling factor for each increase of the carbon number beyond n-dodecane. To better understand the effects of reducing the scaling factor, its influence on the torsion potential profile, and the corresponding gauche-trans conformer distribution, heat of vaporization, melting point, and self-diffusion coefficient for n-dodecane were investigated. This relatively simple procedure enables more accurate predictions of the thermo-physical properties of longer n-alkanes.
Figure
  相似文献   

7.
Insights about scaling of folding properties of proteins are obtained bystudying folding in heteropolymers described by Go-like Hamiltonians. Bothlattice and continuum space models are considered. In the latter case, themonomer-monomer interactions correspond to the Lennard-Jones potential.Several statistical ensembles of the two- and three-dimensional targetnative conformations are considered. Among them are maximally compactconformations which are confined to a lattice and those which are obtainedeither through quenching or annealing of homopolymers to their compactlocal energy minima. Characteristic folding times are found to grow aspower laws with the system size. The corresponding exponents are notuniversal. The size related deterioration of foldability is found to beconsistent with the scaling behavior of the characteristic temperatures:asymptotically, the folding temperature becomes much lower than thetemperature at which glassy kinetics become important. The helicalconformations are found to have the lowest overall scaling exponent andthe best foldability among the classes of conformations studied. Thescaling properties of the Go-like models of the protein conformationsstored in the Protein Data Bank suggest that proteins are not optimizedkinetically.  相似文献   

8.
This paper presents three theorems pertaining to thermodynamic properties of the intermediate (e.g., molten globule) state of proteins exhibiting such a conformation in the presence of GuHCl or urea. The theorems are proved for the three-state case using the denaturant binding model and the linear extrapolation model; their utility is illustrated via applications to examples in the literature. Theorem One states that the denaturant activity that maximizes the population of a partly folded conformation is at any temperature independent of the Gibbs free energy difference between the intermediate and native states. This result holds for both models of protein–denaturant interaction. The second theorem claims that the population maximum is independent, of the denaturant association constant for the denaturant binding model. Theorem Three, which also applies to both models considered here, states that at the temperatures corresponding to the extrema in the population of the intermediate, the enthalpy change of the intermediate is equal to the excess enthalpy function, an experimentally accessible quantity. In the absence of denaturant, the enthalpy change of the intermediate state at the population extrema can be written as a function of the thermodynamic parameters of the unfolded state alone. These results, which can be applied to systems of any number of states under certain conditions, should aid in the optimization of conditions employed for experimental studies of partly organized states of proteins. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
The interplay between the torsional potential energy and the scaling of the 1-4 van der Waals and Coulomb interactions determines the stiffness of flexible molecules. In this paper we demonstrate for the first time that the precise value of the nonbond scaling factor (SF)—often a value assumed without justification—has a significant effect on the critical properties and mechanisms of systems undergoing a phase transition, and that, for accurate simulations, this scaling factor is highly dependent on the system under consideration. In particular, by analyzing the melting of n-alkanes (hexane C6, dodecane C12, tetracosane C24) on graphite, we show that the SF is not constant over varying alkane chain lengths when the structural correlated transformations are concerned. Instead, monotonic decrease of SF with the molecular length drives a cross-over between two distinct mechanisms for melting in such systems. In a broad sense we show that the choice for SF in any simulation containing adsorbed or correlated long molecules needs to be carefully considered.  相似文献   

10.
Ligand binding to receptors is the initial event in many signaling processes, and a quantitative understanding of this interaction is important for modeling cell behavior. In this paper, we study the kinetics of reversible ligand binding to receptors on a spherical cell surface using a self-consistent stochastic theory. Binding, dissociation, diffusion and rebinding of ligands are incorporated into the theory in a systematic manner. We derive explicitly the time evolution of the ligand-bound receptor fraction p(t) in various regimes. Contrary to the commonly accepted view, we find that the well-known Berg-Purcell scaling for the association rate is modified as a function of time. Specifically, the effective on-rate changes non-monotonically as a function of time and equals the intrinsic rate at very early as well as late times, while being approximately equal to the Berg-Purcell value at intermediate times. The effective dissociation rate, as it appears in the binding curve or measured in a dissociation experiment, is strongly modified by rebinding events and assumes the Berg-Purcell value except at very late times, where the decay is algebraic and not exponential. In equilibrium, the ligand concentration everywhere in the solution is the same and equals its spatial mean, thus ensuring that there is no depletion in the vicinity of the cell. Implications of our results for binding experiments and numerical simulations of ligand-receptor systems are also discussed.  相似文献   

11.
Wu MY  Dai DQ  Yan H 《Proteins》2012,80(9):2137-2153
Protein-ligand docking is widely applied to structure-based virtual screening for drug discovery. This article presents a novel docking technique, PRL-Dock, based on hydrogen bond matching and probabilistic relaxation labeling. It deals with multiple hydrogen bonds and can match many acceptors and donors simultaneously. In the matching process, the initial probability of matching an acceptor with a donor is estimated by an efficient scoring function and the compatibility coefficients are assigned according to the coexisting condition of two hydrogen bonds. After hydrogen bond matching, the geometric complementarity of the interacting donor and acceptor sites is taken into account for displacement of the ligand. It is reduced to an optimization problem to calculate the optimal translation and rotation matrixes that minimize the root mean square deviation between two sets of points, which can be solved using the Kabsch algorithm. In addition to the van der Waals interaction, the contribution of intermolecular hydrogen bonds in a complex is included in the scoring function to evaluate the docking quality. A modified Lennard-Jones 12-6 dispersion-repulsion term is used to estimate the van der Waals interaction to make the scoring function fairly "soft" so that ligands are not heavily penalized for small errors in the binding geometry. The calculation of this scoring function is very convenient. The evaluation is carried out on 278 rigid complexes and 93 flexible ones where there is at least one intermolecular hydrogen bond. The experiment results of docking accuracy and prediction of binding affinity demonstrate that the proposed method is highly effective.  相似文献   

12.
13.
We characterise the hydrophobic collapse of single polystyrene chains in water using molecular dynamics simulations. Specifically, we calculate the potential of mean force for the collapse of a single polystyrene chain in water using metadynamics, comparing the results between all atomistic with coarse-grained (CG) molecular simulation. We next explore the scaling behaviour of the collapsed globular shape at the minimum energy configuration, characterised by the radius of gyration, as a function of chain length. The exponent is close to one third, consistent with that predicted for a polymer chain in bad solvent. We also explore the scaling behaviour of the solvent accessible surface area (SASA) as a function of chain length, finding a similar exponent for both all atomistic and CG simulations. Furthermore, calculation of the local water density as a function of chain length near the minimum energy configuration suggests that intermediate chain lengths are more likely to form dewetted states, as compared to shorter or longer chain lengths.  相似文献   

14.
Complications inherent in scaling the basal rate of metabolism in mammals   总被引:19,自引:0,他引:19  
The scaling of the basal rate of metabolism in mammals is reexamined. Both the power and level of the scaling function are sensitive to various factors that interact with body mass and rate of metabolism, including the precision of temperature regulation, food habits, and activity level. This sensitivity implies that the rate of metabolism is a highly plastic character in the course of evolution. Consequently, the singular effect of mass on the rate of metabolism is most effectively analyzed in ecologically and physiologically uniform sets of species, rather than in taxonomically defined groups, which often are ecologically and physiologically diverse. Otherwise, all fitted curves for mammals integrate a variety of competing factors, thereby reflecting the species used and denying unique analytic significance to the power in scaling relations. Kleiber's eutherian curve may represent a relatively uniform set of data because all the species included were domesticated and because selection for high rates of production (and high rates of metabolism) occurred in the process of domestication. In the analysis of scaling relationships, the standard error of estimate (Sy.x) is a more valuable measure of the residual variation than is (1.0-r2) because r2 is a non-linear measure of the conformation of data to the relation and because Sy.x, unlike r2, is independent of the units used in the scaling relationship. At present the best estimate indicates that total rate of metabolism scales proportionally to approximately m0.60 at small masses (less than 300 g), as long as small species do not enter torpor, and scales proportionally to approximately m0.75 at large masses (greater than or equal to 300 g). Physiological properties other than metabolism are potentially sensitive to secondary factors, so their scaling functions also would be most clearly defined for physiologically uniform groups of species. This view suggests that insight into the significance of scaling relations can be obtained by examining the residual variation around a scaling function as well as by examining conformation to the function.  相似文献   

15.
The ontogeny of suction feeding performance, as measured by peak suction generating capacity, was studied in the common snook, Centropomus undecimalis. Suction pressure inside the buccal cavity is a function of the total expansive force exerted on the buccal cavity distributed across the projected area of the buccal cavity. Thus, the scaling exponent of peak suction pressure with fish standard length was predicted to be equal to the scaling exponent of sternohyoideus muscle cross-sectional area, found to be 1.991, minus the scaling exponent for the projected buccal cavity area, found to be 2.009, equal to -0.018. No scaling was found in peak suction pressure generated by 12 snook ranging from 94 to 314 mm SL, supporting the prediction from morphology. C. undecimalis are able to generate similar suction pressures throughout ontogeny.  相似文献   

16.
17.
Retrograde traffic between the Golgi apparatus and the endoplasmic reticulum (ER) is largely mediated by COPI-coated transport vesicles. In mammalian cells, retrograde traffic can pass through an intermediate compartment. Here, we report that the mammalian soluble N-ethylmaleimide-sensitive factor (NSF) attachment receptor (SNARE) proteins mSec22b, mUse1/D12, mSec20/BNIP1, and syntaxin 18 form a quaternary SNARE complex. Fluorescence resonance energy transfer (FRET) experiments prove that these interactions occur in the ER of living cells. In addition, mUse1/D12 and mSec20/BNIP1 form homo-oligomers in vivo. Furthermore, we show that mSec22b, mUse1/D12, mSec20/BNIP1, and syntaxin 18 are recruited into COPI-coated vesicles formed in vitro. Immunogold electron microscopy confirmed that these SNARE proteins colocalize with the KDEL receptor ERD2 in COPI-coated vesicles. Moreover, both FRET and immunoprecipitation experiments reveal interactions of these SNAREs with both ERD2 and COPI subunits. We conclude that the SNAREs described here are sorted via interaction with components of the COPI-dependent budding complex into Golgi-to-ER retrograde COPI vesicles and function in retrograde transport from the Golgi to the ER Golgi intermediate compartment (ERGIC) or the ER.  相似文献   

18.
We have applied computer simulation technique to study interaction of two anti-inflammatory drugs (NSAIDs) indoprofen and NS398 with cyclooxygenase (COX-1 and COX-2) enzymes. We have also investigated conformational flexibility of the two drugs by systematic search and simulated annealing molecular dynamics (SAMD) methods. Both the drugs were docked in the cyclooxygenase channel using in house docking program IMF1. The complexes were energy minimised by molecular mechanics (MM) method. These were heated for 30 picoseconds (ps), equilibrated for 110 ps at 300K and subjected to 'production simulation' for 110 ps by molecular dynamics (MD) method using Sanderís module of AMBER 5.0 package and united atom force field mostly from PARM96.DAT. Integration was carried out with time step of 0.001 ps, distance dependent di-electric constant with scaling factor 2.0 for 1-4 interaction and cut-off distance for non-bonded pair-list equal to 8A. The non-bonded pair-list was upgraded after every 20 cycles. The coordinate output from MD trajectories is analysed using analysis package of AMBER 5.0, MOLMOL, P-CURVES 3.0 and in house packages: ANALMD, ANALP1. We have observed perturbative changes in COX-1 and COX-2 structures due to indoprofen and NS398. In case of indoprofen specific changes between COX-1 and COX-2 were noted in helix D, H6, S6 and helix H8 in the cyclooxygenase cavity. In case of NS398 these were in helix B in membrane binding domain, helix H6, S8 and S10 in cyclooxygenase cavity and helices H14-H16 in small lobe close to haem binding region. Implications of these results in enzyme selectivity by NSAIDs is discussed here.  相似文献   

19.
1. In natural communities, populations are linked by feeding interactions that make up complex food webs. The stability of these complex networks is critically dependent on the distribution of energy fluxes across these feeding links. 2. In laboratory experiments with predatory beetles and spiders, we studied the allometric scaling (body-mass dependence) of metabolism and per capita consumption at the level of predator individuals and per link energy fluxes at the level of feeding links. 3. Despite clear power-law scaling of the metabolic and per capita consumption rates with predator body mass, the per link predation rates on individual prey followed hump-shaped relationships with the predator-prey body mass ratios. These results contrast with the current metabolic paradigm, and find better support in foraging theory. 4. This suggests that per link energy fluxes from prey populations to predator individuals peak at intermediate body mass ratios, and total energy fluxes from prey to predator populations decrease monotonically with predator and prey mass. Surprisingly, contrary to predictions of metabolic models, this suggests that for any prey species, the per link and total energy fluxes to its largest predators are smaller than those to predators of intermediate body size. 5. An integration of metabolic and foraging theory may enable a quantitative and predictive understanding of energy flux distributions in natural food webs.  相似文献   

20.
《Biophysical journal》2022,121(1):79-90
Highly detailed steered molecular dynamics simulations are performed on differently glycosylated receptor binding domains of the severe acute respiratory syndrome coronavirus-2 spike protein. The binding strength and the binding range increase with glycosylation. The interaction energy rises very quickly when pulling the proteins apart and only slowly drops at larger distances. We see a catch-slip-type behavior whereby interactions during pulling break and are taken over by new interactions forming. The dominant interaction mode is hydrogen bonds, but Lennard-Jones and electrostatic interactions are relevant as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号