首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Methods

Combining small-angle X-ray and neutron scattering measurements with inelastic neutron scattering experiments, we investigated the impact of high hydrostatic pressure on the structure and dynamics of β-lactoglobulin (βLG) in aqueous solution.

Background

βLG is a relatively small protein, which is predominantly dimeric in physiological conditions, but dissociates to monomer below about pH 3.

Results

High-pressure structural results show that the dimer–monomer equilibrium, as well as the protein–protein interactions, are only slightly perturbed by pressure, and βLG unfolding is observed above a threshold value of 3000 bar. In the same range of pressure, dynamical results put in evidence a slowing down of the protein dynamics in the picosecond timescale and a loss of rigidity of the βLG structure. This dynamical behavior can be related to the onset of unfolding processes, probably promoted from water penetration in the hydrophobic cavity.

General significance

Results suggest that density and compressibility of water molecules in contact with the protein are key parameters to regulate the protein flexibility.  相似文献   

2.
Human serum albumin (HSA) and bovine β-lactoglobulin (β-Lg) are both introduced as blood and oral carrier scaffolds with high affinity for a wide range of pharmaceutical compounds. Prodigiosin, a natural three pyrrolic compound produced by Serratia marcescens, exhibits many pharmaceutical properties associated with health benefits. In the present study, the interaction of prodigiosin with HSA and β-Lg was investigated using fluorescence spectroscopy, circular dichroism (CD) and computational docking. Prodigiosin interacts with the Sudlow’s site I of HSA and the calyx of β-Lg with association constant of 4.41 × 104 and 1.99 × 104 M−1 to form 1:1 and 2:3 complexes at 300 K, respectively. The results indicated that binding of prodigiosin to HSA and β-Lg caused strong fluorescence quenching of both proteins through static quenching mechanism. Electrostatic and hydrophobic interactions are the major forces in the stability of PG–HSA complex with enthalpy- and entropy-driving mode, although the formation of prodigiosin–β-Lg complex is entropy-driven hydrophobic associations. CD spectra showed slight conformational changes in both proteins due to the binding of prodigiosin. Moreover, the ligand displacement assay, pH-dependent interaction and protein–ligand docking study confirmed that the prodigiosin binds to residues located in the subdomain IIA and IIIA of HSA and central calyx of β-Lg.  相似文献   

3.
Extremophiles - The stability of dimeric cytochrome c′ from a thermophile, as compared with that of a homologous mesophilic counterpart, is attributed to strengthened interactions around the...  相似文献   

4.
A series of N,N-diethyl phenyl thioxo-tetrahydropyrimidine carboxamide have been synthesized and investigated for their β-glucuronidase inhibitory activities. All molecules exhibited excellent inhibition with IC50 values ranging from 0.35 to 42.05 µM and found to be even more potent than the standard d-saccharic acid. Structure-activity relationship analysis indicated that the meta-aryl-substituted derivatives significantly influenced β-glucuronidase inhibitory activities while the para-substitution counterpart outperforming moderate potency. The most potent compound in this series was 4g bearing thiophene motif with IC50 of 0.35 ± 0.09 µM. To verify the SAR, molecular docking and molecular dynamics studies were also performed.  相似文献   

5.
Aggregates of amyloid-beta proteins (Aβ) have been recognised to be intimately related to pathogenesis of Alzheimer’s disease (AD). Indeed, Aβ aggregates of various sizes from dimers to fibrils were found in the brains of AD patients, and these aggregates can be self-organised. Since abnormal accumulation of metal ions such as Zn, Cu and Fe was also observed in the brains, the association between Aβ aggregations and these metal ions has been studied widely. In the present study, to elucidate the influence of Zn ions on the stability of Aβ aggregates, we performed molecular dynamics (MD) simulations and ab initio fragment molecular orbital (FMO) calculations on the Aβ nonamers with and without Zn ions and investigated the change in its structure and electronic states induced by Zn ions at atomic and electronic levels. The MD simulations revealed that Aβ nonamer cannot keep its symmetry structure, whereas Aβ nonamer with Zn ions keeps the structure. The FMO results indicated that electrostatic interactions among the charged amino-acid residues of Aβ nonamer are significantly changed by the influence of Zn ions to stabilise Aβ nonamer. These results provide useful information for proposing novel compounds, which binds specifically to Aβ and inhibits the Aβ aggregation.  相似文献   

6.
The first computational study of the folding and dynamics of a hydrophobic β-hairpin containing a central heterochiral diproline segment is reported. Linear hydrophobic sequences containing centrally positioned diproline motifs, heterochiral (DL/LD) and homochiral (LL/DD)), are investigated for their ability to form β-hairpins. Heterochiral diproline motifs (LD/DL) reveal the formation of stable β-hairpins with the backbone adopting β-turn conformation and the formation of backbone hydrogen bonds with antiparallel cross-strand registry, whereas the homochiral diproline (LL/DD) containing sequences tend to adopt PPII helix conformation. The competition between the β-turn formation and the backbone H-bond ladder of the antiparallel β-strands in heterochiral diproline containing sequences is employed to validate the hypothesis that β-turn formation precedes inter-strand registry in the folding of a β-hairpin (“zipper” mechanism). The observation of noncanonical hydrogen bonds leads to a folded β-hairpin-like conformation and points to the existence of relatively stable transition state intermediates, between the unfolded (extended) and folded (β-hairpin) states. The MD simulations are in excellent agreement with the experimental studies on the model system and constitute the very first computational investigation of the folding and dynamics of a completely hydrophobic synthetic β-hairpin containing heterogeneous residues of mixed chirality.  相似文献   

7.
Thrombin is a serine proteinase that plays a fundamental role in coagulation. In this study, we address the effects of ligand site recognition by alpha-thrombin on conformation and energetics in solution. Active site occupation induces large changes in secondary structure content in thrombin as shown by circular dichroism. Thrombin-D-Phe-Pro-Arg-chloromethyl ketone (PPACK) exhibits enhanced equilibrium and kinetic stability compared to free thrombin, whose difference is rooted in the unfolding step. Small-angle X-ray scattering (SAXS) measurements in solution reveal an overall similarity in the molecular envelope of thrombin and thrombin-PPACK, which differs from the crystal structure of thrombin. Molecular dynamics simulations performed with thrombin lead to different conformations than the one observed in the crystal structure. These data shed light on the diversity of thrombin conformers not previously observed in crystal structures with distinguished catalytic and conformational behaviors, which might have direct implications on novel strategies to design direct thrombin inhibitors.  相似文献   

8.
The discovery of clinically relevant inhibitors of retinoic acid receptor-related orphan receptor-gamma-t (RORγt) for autoimmune diseases therapy has proven to be a challenging task. In the present work, to find out the structural features required for the inhibitory activity, we show for the first time a three-dimensional quantitative structure–activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations for a series of novel thiazole/thiophene ketone amides with inhibitory activity at the RORγt receptor. The optimum CoMFA and CoMSIA models, derived from ligand-based superimposition I, exhibit leave-one-out cross-validated correlation coefficient (R2cv) of .859 and .805, respectively. Furthermore, the external predictive abilities of the models were evaluated by a test set, producing the predicted correlation coefficient (R2pred) of .7317 and .7097, respectively. In addition, molecular docking analysis was applied to explore the binding modes between the inhibitors and the receptor. MD simulation and MM/PBSA method were also employed to study the stability and rationality of the derived conformations, and the binding free energies in detail. The QSAR models and the results of molecular docking, MD simulation, binding free energies corroborate well with each other and further provide insights regarding the development of novel RORγt inhibitors with better activity.  相似文献   

9.
After a brief overview of NMR and X-ray crystallography studies on protein flexibility under pressure, we summarize the effects of hydrostatic pressure on the native fold of azurin from Pseudomonas aeruginosa as inferred from the variation of the intrinsic phosphorescence lifetime and the acrylamide bimolecular quenching rate constants of the buried Trp residue. The pressure/temperature response of the globular fold and modulation of its dynamical structure is analyzed both in terms of a reduction of internal cavities and of the hydration of the polypeptide. The study of the effect of two single point cavity forming mutations, F110S and I7S, on the unfolding volume change (ΔV(0)) of azurin and on the internal dynamics of the protein fold under pressure demonstrate that the creation of an internal cavity will enhance the plasticity and lower the stability of the globular structure. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.  相似文献   

10.
Circular dichroism spectra of two -peptides, i.e. peptides composed of -amino acids, calculated using ensembles of configurations obtained by molecular dynamics simulation are presented. The calculations were based on 200 ns simulations of a -heptapeptide in methanol at 298 K and 340 K and a 50 ns simulation of a -hexapeptide in methanol at 340 K. In the simulations the peptides sampled both folded (helical) and unfolded structures. Trajectory structures with common backbone conformations were identified and grouped into clusters. The CD spectra were calculated for individual structures, based on peptide-group dipole transition moments obtained from semi-empirical molecular orbital theory and using the so-called matrix method. The single-structure spectra were then averaged over entire trajectories and over clusters of structures. Although certain features of the experimental CD spectra of the -peptides are reproduced by the trajectory-average spectra, there exist clear differences between the two sets of spectra in both wavelength and peak intensities. The analysis of individual contributions to the average spectra shows that, in general, the interpretation of a CD signal in terms of a single structure is not possible. Moreover, there is a large variation in the CD spectra calculated for a set of individual structures that belong to the same cluster, even when a structurally tight clustering criterion is used. This indicates that the CD spectra of these peptides are very sensitive to small local structural differences.  相似文献   

11.
We have studied two different beta-peptides in methanol using explicit solvent molecular dynamics simulations and the GROMOS 53A6 force field: a heptapeptide (peptide 1) expected to form a left-handed 3(14)-helix, and a hexapeptide (peptide 2) expected to form a beta-hairpin in solution. Our analysis has focused on identifying and analyzing the stability of the dominant secondary structure conformations adopted by the peptides, as well as on comparing the experimental NOE distance upper bounds and 3J-coupling values with their counterparts calculated on the basis of the simulated ensembles. Moreover, we have critically compared the present results with the analogous results obtained with the GROMOS 45A3 (peptide 1) and 43A1 (peptide 2) force fields. We conclude that within the limits of conformational sampling employed here, the GROMOS 53A6 force field satisfactorily reproduces experimental findings regarding the behavior of short beta-peptides, with accuracy that is comparable to but not exceeding that of the previous versions of the force field. GCE legend Conformational clustering analysis of the simulated ensemble of a ss-hexapeptide with two different simulation setups (a and b). The central members of all of the clusters populating more than 5% of all of the structures are shown, together with the most dominant hydrogen bonds and the corresponding percentages of cluster members containing them.  相似文献   

12.
The aim of the present study was to determine the effect of environmental stresses (temperature, pH, osmotic pressure, high hydrostatic pressure (HHP)) on the antibiotic susceptibility of 12 different pathogenic Vibrio parahaemolyticus isolates. Isolates were subjected to growth at (30 ℃and 37 ℃), an osmotic pressure of (1% and 6% NaCl), a media at pH (6.0 and 9.0) and three different HHP treatment (180, 250, 300 MPa). The minimal inhibitory concentrations (MICs) of tested antibiotics used against unstressed (control), stressed or post-stressed isolates were determined using the broth microdilution method. The study found that incubation under increased salt (6%), reduced salt (1%) and increased pH (9.0) conditions were commonly associated with increased antibiotic resistance. Incubation at 30 ℃ temperature, reduced pH (6.0) and HHP treatment were commonly associated with decreased antibiotic resistance. Besides, both ciprofloxacin and cefotaxime kept a constant MIC during almost all stress challenges. Thus our data demonstrate that exposure of V. parahaemolyticus to some stress conditions may contribute on the rapid development of antibiotic resistance in this food borne pathogen.  相似文献   

13.
14.
Thanks to the advances in grid technologies, we are able to propose here an evolution of our molecular simulator that, when moving to larger systems, instead of reducing the granularity of the dynamical treatment (as is often done in molecular dynamics studies of such systems) exploits the extra power of the grid approach to the end of preserving the detailed nature of theatomistic formulation of the interaction. Key steps of such evolution are: (1) the assemblage of the interaction based on a composition of the ab initio intramolecular data and a portable parameterization of the intermolecular potential linking ab initio evaluation of intramolecular potentials and the partitioning of molecular polarizability; (2) the exploitation of an efficient coordinated porting and running of molecular dynamics codes on the European grid distributed computing infrastructure. As a prototype case study, the N-methylacetamide dimer in vacuo has been considered and the formation of possible conformers is analyzed.  相似文献   

15.
Designing selective protein kinase B (PKB/Akt) inhibitor is an area of intense research to develop potential anticancer drugs. In the present study, the molecular basis governing PKB-selective inhibition has been investigated using molecular dynamics simulation. The binding free energies calculated by MM/PBSA gave a good correlation with the experimental biological activity and a good explanation of the activity difference of the studied inhibitors. The decomposition of free energies by MM/GBSA indicates that the ethyl group on pyrrolo[2,3-d]pyrimidine ring of inhibitor Lig1 (N-{[(3S)-3-amino-1-(5-ethyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)pyrrolidin-3-yl]-methyl}-2,4-difluoro-benzamide) is an important contributor to its PKBα selectivity due to its hydrophobic interaction with the side chain of Thr291 in PKBα. The substituted groups on the pyrrolidine ring of Lig1 also show a strong tendency to mediate protein-ligand interactions through the hydrogen bonds formed between the amino or amide groups of Lig1 and the carboxyl O atoms of Glu234, Glu278, and Asp292 of PKBα. It was reported that there are only three key amino acid differences between PKBα (Thr211, Ala230, Met281) and PKA (Val104, Val123, Leu173) within the clefts of ATP-binding sites. These differences propel a drastic conformational change in PKA, weakening its binding interactions with inhibitor. The impact was also confirmed by MD simulated interaction modes of inhibitor binding to PKBα mutants with the in silico mutations of the three key amino acids, respectively. We expect that the results obtained here could be useful for future rational design of specific ATP-competitive inhibitors of PKBα.  相似文献   

16.
X Hu  B Wei  H Li  C Wu  Y Bai  X Xu  Z Jin  Y Tian 《Carbohydrate polymers》2012,90(2):1193-1196
In this study, a novel high hydrostatic pressure (HHP) technique was used to prepare the β-cyclodextrin-vitamin C (β-CD-Vc) inclusion complex. The inclusion ratio was positively correlated with the pressure under 300MPa and remained at above 50.0% when the pressure was more than 300MPa. Fourier-transform infrared spectroscopy (FI-IR) and UV-visible spectroscopy (UV-vis) analysis showed that characteristic absorption bands and the absorption peak of Vc disappeared in the spectra of the β-CD-Vc inclusion complex. Furthermore, differential scanning calorimetry (DSC) data revealed that only one endothermic peak appeared at about 138°C in the DSC curve of the β-CD-Vc inclusion complex. These results indicate that the HHP treatment effectively induces the formation of β-CD-Vc inclusion complex.  相似文献   

17.
Hybrid bisindole-thiosemicarbazides analogs (118) were synthesized and screened for β-glucuronidase activity. All compounds showed varied degree of β-glucuronidase inhibitory potential when compared with standard d-saccharic acid 1,4-lactone (IC50 = 48.4 ± 1.25 μM). Compounds 4, 7, 9, 6, 5, 12, 17 and 18 showed exceptional β-glucuronidase inhibition with IC50 values ranging from 0.1 to 5.7 μM. Compounds 1, 3, 8, 16, 13, 2 and 14 also showed better activities than standard with IC50 values ranging from 7.12 to 15.0 μM. The remaining compounds 10, 11, and 15 showed good inhibitory potential with IC50 values 33.2 ± 0.75, 21.4 ± 0.30 and 28.12 ± 0.25 μM respectively. Molecular docking studies were carried out to confirm the binding interaction of the compounds.  相似文献   

18.
Results from biochemical analyses for a series of 20 butitaxel analogues, paclitaxel and docetaxel were used to build two- and three-dimensional quantitative structure-activity relationship (QSAR) models in order to investigate the properties associated with microtubule assembly and stabilization. A comparative molecular field analysis (CoMFA) model was built using steric and electrostatic fields. The CoMFA model yielded an r2 of 0.943 and a cross-validated r2 (i.e. q2) of 0.376. Hologram quantitative structure-activity relationship (HQSAR) modeling of these same data generated an r2 of 0.919 and a q2 of 0.471. Contour maps used to visualize the steric and electrostatic contributions associated with activity or lack thereof were, as expected, localized to the varied position of the taxane system. Each analogue was docked successfully into a model of -tubulin derived from previously determined cryoelectron microscopy analyses of the tubulin / heterodimer. All analogues superimposed well with paclitaxel bound to the protein, as well as with each other. Defining the variable region of each structure as the ligand and docking it separately into the paclitaxel site revealed a modest correlation (r2=0.53) between activity and docking energy of all the compounds in the dataset. When only the butitaxel derivatives were considered, the correlation increased to 0.61. The mathematical models derived here provide information for the future development of taxanes.  相似文献   

19.
High pressure (>200Mpa) or high temperature (>45°C) can both induce an irreversible inactivation of the -galactosidases of Aspergillus oryzae, Kluyveromyces lactis and Escherichia coli. Moderate pressures (50MPa-250 MPa) exerted a protective effect against thermal inactivation for the three -galactosidases investigated. High pressure could thus be used to carry out b-galactosidase catalysed reactions such as lactose hydrolysis, at higher temperatures.  相似文献   

20.
《Biophysical journal》2022,121(13):2514-2525
High pressure (HP) is a particularly powerful tool to study protein folding/unfolding, revealing subtle structural rearrangements. Bovine β-lactoglobulin (BLG), a protein of interest in food science, exhibits a strong propensity to bind various bioactive molecules. We probed the effects of the binding of biliverdin (BV), a tetrapyrrole linear chromophore, on the stability of BLG under pressure, by combining in situ HP small-angle neutron scattering (SANS) and HP-UV absorption spectroscopy. Although BV induces a slight destabilization of BLG during HP-induced unfolding, a ligand excess strongly prevents BLG oligomerization. Moreover, at SANS resolution, an excess of BV induces the complete recovery of the protein “native” 3D structure after HP removal, despite the presence of the BV covalently bound adduct. Mass spectrometry highlights the crucial role of cysteine residues in the competitive and protective effects of BV during pressure denaturation of BLG through SH/S-S exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号