首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5 alpha-Cholestan-3 beta-ol esters of aliphatic acids undergo both enantiotropic and monotropic changes of state. Ten saturated and three unsaturated esters have been examined by differential scanning calorimetry and polarizing microscopy to determine transition temperatures, enthalpies, and entropies. The results are compared with an analogous series of cholesterol esters. All esters of even-numbered n-alkanoic acids from C2 to C20 melt from a crystalline state to an isotropic liquid. The crystalline state has been studied by X-ray powder diffraction. The C8 to C20 esters have progressively increasing crystalline melting transition temperatures from 76 to 99 degrees C and possess similar X-ray powder diffraction patterns, suggesting that these compounds form an isostructural series. Esters of C2, C4, and C6 acids exhibit polymorphism. Crystalline cholestanol oleate melts to an isotropic liquid, whereas cholestanol linoleate and linolenate fail to crystallize, even after several months at -20 degrees C. Esters of the even-numbered saturated acids from C4 to C14 form monotropic cholesteric liquid crystalline phases. Esters C10, C12, and C14 form smectic liquid crystalline phases. Cholestanol oleate, linoleate, and linolenate form both cholesteric and smectic mesophases. The lower smectic to cholesteric and cholesteric to isotropic transition temperatures of the cholestanol esters compared to the corresponding transition temperatures of the analogous cholesterol esters suggest that the delta 5 double bond in cholesterol increases the thermal stability of the mesophases of cholesterol esters.  相似文献   

2.
A liquid crystalline phase in spermidine-condensed DNA.   总被引:1,自引:1,他引:0  
Over a large range of salt and spermidine concentrations, short DNA fragments precipitated by spermidine (a polyamine) sediment in a pellet from a dilute isotropic supernatant. We report here that the DNA-condensed phase consists of a cholesteric liquid crystal in equilibrium with a more concentrated phase. These results are discussed according to Flory's theory for the ordering of rigid polymers. The liquid crystal described here corresponds to an ordering in the presence of attractive interactions, in contrast with classical liquid crystalline DNA. Polyamines are often used in vitro to study the functional properties of DNA. We suggest that the existence of a liquid crystalline state in spermidine-condensed DNA is relevant to these studies.  相似文献   

3.
Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures.  相似文献   

4.
Liquids have neither a periodic structure nor the completely random character of gases therefore the detailed study of their x-ray scattering diagram encounters many difficulties. The idea of periodic regularity in molecules of liquid polymers has been an attractive proposition for the simple interpretation of liquid polymer x-ray diagrams. The categorisation of polymer substances as being between a crystal phase with a perfect order and an amorphous disordered state is an over simplification of the complex reality. For obtaining structural information, during the early stages of the application of x-ray diffraction, a near crystalline model of the molecular arrangements in liquids was utilised. However, the results from these investigations led to just an approximation of the crystalline state. Our studies have analysed the real image of Fourier space of liquid polymers, for the first time, using anomalous diffractometry. The findings show the precise atomic structure of liquid polymers when transformed, by cooling, to solid polymers. We demonstrate that there is an intermediate ordered structure, characterised by the real full image of Fourier space. This prominent state of matter, an intermediate ordered structure, is defined by a regular unit cell with a five-fold symmetry. These structural atomic studies contribute to a more detailed understanding of the properties of polymers than the traditional studies of the degree of crystallinity.  相似文献   

5.
The biogenic origin of the first traces of life is often based on the morphological analysis of microfossils. However life-like forms can also be obtained via chemical synthesis from purely inorganic precursors. Many examples can be found in literature that are mainly based on aqueous solution chemistry. Osmotic growth of gelatinous precipitates is observed during the formation of “chemical gardens”. Point defects in surfactant mesophases lead to mesoporous silica with curved shapes. The oriented attachment of nanocrystals via hydrophilic polymers leads to mesocrystals that exhibit a large variety of unusual shapes.  相似文献   

6.
Molecular arrangements in glycosphingolipids   总被引:3,自引:0,他引:3  
A number of homogeneous glycosphingolipids have been prepared and their structural behaviour studied in the solid state as well as in lipid-water systems and in surface films. Mainly X-ray diffraction techniques have been used in the phase analyses. A very complex phase pattern is usually found — e.g. cerebroside containing 2-hydroxy fatty acids has 5 crystalline phases and 2 thermotropic mesophases. This is also the case in the water systems, where hexagonal, lamellar and cubic mesophases are observed. Whereas in earlier surface film studies of complex lipids, such as phospholipids, only one liquid expanded phase usually has been found, cerebrosides also exhibit numerous condensed phases. Comparisons with corresponding natural lipids have shown a close relationship both in the phase behaviour and structure of the different polymorphs.  相似文献   

7.
Conditions of formation of DNA aggregates by the addition of spermidine were determined with 146 base pair DNA fragments as a function of spermidine and NaCl concentration. Two different phases of spermidine-DNA complexes are obtained: a cholesteric liquid crystalline phase with a large helical pitch, with interhelix distances ranging from 31.6 to 32.6 A, and a columnar hexagonal phase with a restricted fluidity in which DNA molecules are more closely packed (29.85 +/- 0.05 A). In both phases, the DNA molecule retains its B form. These phases are always observed in equilibrium with the dilute isotropic solution, and their phase diagram is defined for a DNA concentration of 1 mg/ml. DNA liquid crystalline phases induced by spermidine are compared with the DNA mesophases already described in concentrated solutions in the absence of spermidine. We propose that the liquid crystalline character of the spermidine DNA complexes is involved in the stimulation of the functional properties of the DNA reported in numerous experimental articles, and we discuss how the nature of the phase could regulate the degree of activity of the molecule.  相似文献   

8.
Liquid crystalline systems of monoolein/water could be a promising approach for the delivery of celecoxib (CXB) to the skin because these systems can sustain drug release, improve drug penetration into the skin layers and minimize side effects. This study evaluated the potential of these systems for the delivery of CXB into the skin based on in vitro drug release and skin permeation studies. The amount of CXB that permeated into and/or was retained in the skin was assayed using an HPLC method. Polarizing light microscopy studies showed that liquid crystalline systems of monoolein/water were formed in the presence of CXB, without any changes in the mesophases. The liquid crystalline systems decreased drug release when compared to control solution. Drug release was independent of the initial water content of the systems and CXB was released from cubic phase systems, irrespective of the initial water content. The systems released the CXB following zero-order release kinetics. In vitro drug permeation studies showed that cubic phase systems allowed drug permeation and retention in the skin layers. Cubic phase systems of monoolein/water may be promising vehicles for the delivery of CXB in/through the skin because it improved CXB skin permeation compared with the control solution.KEY WORDS: celecoxib, drug delivery systems, liquid crystalline system, monoolein, skin permeation  相似文献   

9.
Transitions between isotropic and liquid crystalline phases of concentrated solutions of DNA with an average contour length (500 A) near the persistence length were examined in 0.01 M supporting 1:1 electrolyte (predominantly NaCl). A quantitative phase diagram describing the transitions occurring over a DNA concentration range from 100 to 290 mg/mL and temperatures from 20 to 60 degrees C was constructed from solid-state 31P-nmr data and examination of the morphologies of the mesophases by polarized light microscopy. Three anisotropic phases were observed in solutions with DNA concentrations of 160-290 mg/mL: an unidentified, weakly birefringent phase termed "precholesteric," a true cholesteric phase with pitch approximately 2 microns, and a third, presumably more highly ordered phase. Comparison with previous studies showed that the critical concentration for anisotropic phase formation and the nature of the phases formed by these DNA molecules are not strongly affected by decreasing the supporting electrolyte concentration from approximately 0.2 M to 10 mM. There are, however, profound effects of decreasing the supporting electrolyte concentration on the width of the transition from isotropic to totally anisotropic solutions, and the nature of the transitions between phases. Decreasing the supporting electrolyte concentration significantly increases the concentration range of persistence of the isotrophic phase, and results in the formation of triphasic solutions (isotropic and two liquid crystalline phases). Values of the critical DNA concentrations for anisotropic phase formation from the theory of A. Stroobants et al. [(1986) Macromolecules 19, 2232 to 2238] were found to be significantly lower than the observed values for any reasonable estimate of the effective radius, probably because of the relatively short lengths of DNA fragments examined in the present study. Comparison of the experimentally determined DNA concentrations required for anisotropic phase formation with the values predicted from Flory's lattice statistics theory, which explicitly considers the rod length, permitted estimation of the effective DNA radius. The estimated radius was inconsistent with effective radii calculated from Poisson-Boltzmann (P-B) theory based on a supporting electrolyte concentration of 10 mM, but was in fair agreement with P-B theory assuming that Na+ DNA contributes approximately 0.24 Na+ counterions/nucleotide to the effective free sodium ion concentration.  相似文献   

10.
Binary phase behavior of saturated chain with unsaturated chain cholesteryl esters is evaluated by analysis of the phase diagrams in terms of ideal solution theory. Cholesteryl palmitate, which crystallizes in the bilayer structure, forms a eutectic with either cholesteryl oleate or cholesteryl linoleate and, as indicated by low angle X-ray data, the components are nearly totally fractionated in the solid state. The fit of the two experimental liquidus curves by a calculation of freezing point depression for an ideal solution indicates that the molecular interactions are nonspecific in the binary liquid state. Cholesteryl caprylate and cholesteryl oleate, both of which crystallize as the monolayer II form, also form a eutectic. X-ray data again indicate nearly total fractionation. The liquidus curve is reasonably well matched by calculation of ideal freezing point depression. However, dissimilar molecular volumes can cause the melt-cholesteric transition line to deviate from an ideal concentration dependence. Possible fractionation mechanisms for cholesteryl esters in arterial lesions are thereby indicated. For example, when the molecules have greatly different volumes, clustering can occur in the liquid crystalline state. Even when the molecular volumes are similar, the saturated component can solidify in regions where it is relatively abundant, because of the incompatibility of two crystal structures with greatly different layer structures.  相似文献   

11.
Biomembranes are unique states of soft matter that share some of their materials properties with the mesophases of liquid crystals. Although of genuinely fluid character, membranes can display ordered states under physiological conditions, and it appears that their lateral organization and the related functional properties are intimately coupled to states in-between order and disorder. Hence, the liquid-ordered state of membranes, which owes its existence to the unique ability of cholesterol to mediate between order and disorder, has moved center stage in the characterization of membranes in terms of domains or rafts.  相似文献   

12.
Effect of the constant magnetic field (MF) by the induction of 1.1 T on formation kinetics of bilayer lipid membranes (BLM) from egg lecithin in decane was discovered. Under the effect of MF oriented in parallel to the lipid film place the rate of BLM formation decreases, while at its perpendicular orientation it is accelerated. The stationary value of BLM capacity decreases under MF effect at both orientations. The discovered changes in the rate of BLM formation under MF effect seem to be related to the effect of MF on liquid crystalline structure of colour lipid film.  相似文献   

13.
Elastic modulus and stress-transfer properties of tunicate cellulose whiskers   总被引:10,自引:0,他引:10  
Experimental deformation micromechanics of natural cellulose fibers using Raman spectroscopy and X-ray diffraction have been widely reported. However, little has been published on the direct measurements of the mechanical properties, and in particular the elastic modulus, of the highly crystalline material in the native state. Here we report on measurements of the elastic modulus of tunicate cellulose using a Raman spectroscopic technique. A dispersed sample of the material is deformed using a four-point bending test, and a shift in a characteristic Raman band (located at 1095 cm(-1)) is used as an indication of the stress in the material. Relatively little intensity change of the Raman band located at 1095 cm(-1) is shown to occur for samples oriented parallel and perpendicular to the polarization direction of the laser, as compared to a highly oriented flax sample. This indicates that the tunicate sample is a two-dimensional in-plane random network of fibers. By use of this result, the Raman shift, and calibrations with strain from other materials, it is shown that the modulus of the material is very high, at about 143 GPa, and a lack of Raman band broadening is thought to be due to the fact that there is pure crystalline deformation occurring without the effect of crystalline/amorphous fractions. A strain sensitivity of the shift in the 1095-cm(-1) Raman peak for this specimen is shown to be -2.4 +/- 0.2 cm(-1)/%. A molecular mechanics approach, using computer simulation and an empirical force field, was used to predict the modulus of a highly oriented chain of the material, and this is found to be 145 GPa, which is in agreement with the experimental data. However, by use of a normal-mode analysis, it is found that a number of modes have positions close to the central positions of the experimental Raman band. One in particular is found to shift at a rate of 2.5 cm(-1)/%, but due to the complex nature of the structure, it is not entirely conclusive that this band is representative of the experimental findings.  相似文献   

14.
Structural features of non-granular spherulitic maize starch   总被引:4,自引:0,他引:4  
Complementary analyses of the internal structure of spherulites crystallized from high-amylose maize starch were obtained using light, electron and atomic force microscopy. Radially oriented crystalline lamellae were observed in transmission and scanning electron microscopy, as well as AFM. Internal structures consistent with the central hilum region of starch granules were observed. Spherulites were composed largely of linear or lightly branched starch polymers. Degradation of amylopectin at gelatinization temperatures of 180 degrees C was evident, but iodine binding suggested a high molecular weight (>100 DP) for the spherulitic polymers.  相似文献   

15.
16.
DNA liquid crystals forming in water-salt solutions containing polyethylene glycol were used as a system for testing consequences of reactions of antitumor compounds belonging to two different groups with molecules of nucleic acids. It was found that with due account of the level of DNA molecule filling with daunorubicin it was possible to form two cholester phases characterized by the textures of "finger prints" and CD spectra with intensive bands of unlike signs, as well as the nematic phase characterized by the texture of the "black twisted fiber" system and the absence of the CD spectrum intensive band. Modification of the DNA molecules resulting from the reaction with cysdichlorodiamine platinum (II) led to formation of a new liquid crystalline phase with properties differing from those of the liquid crystalline phases of the cholester or nematic type.  相似文献   

17.
The effect of cholesterol on the structure of phosphatidylcholine bilayers was investigated by X-ray diffraction methods. Electron density profiles at 5 Å resolution along with chain tilt and chain packing parameters were obtained and compared for phosphatidylcholine/cholesterol bilayers and for pure phosphatidylcholine bilayers in both the gel and liquid crystalline states. The cholesterol in the bilayer was localized by noting the position of discrete elevations in the electron density profiles. Cholesterol can either increase or decrease the width of the bilayer depending on the physical state and chain length of the lipid before the introduction of cholesterol. For saturated phosphatidylcholines containing 12–16 carbons per chain, cholesterol increases the width of the bilayer as it removes the chain tilt from gel state lipids or increases the trans conformations of the chains for liquid crystalline lipids. However, cholesterol reduces the width of 18 carbon chain bilayers below the phase transition temperature as the long phospholipid chains must deform or kink to accomodate the significantly shorter cholesterol molecule. Although cholesterol has a marked effect on hydrocarbon chain organization, it was found that, within the resolution limits of the data, the phosphatidylcholine head group conformation is unchanged by the addition of cholesterol to the bilayer. The head group is oriented parallel to the plane of the bilayer for phosphatidylcholine in the gel and liquid crystalline states and this orientation is not changed by the addition of cholesterol.  相似文献   

18.
The relationship between molecular architecture and the nature of interactions with lipid bilayers has been studied for a series of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers using small-angle X-ray scattering (SAXS) and thermal analysis (differential scanning calorimetry, DSC). The number of molecular repeat units in the hydrophobic poly(propylene oxide), PPO, block has been found to be a critical determinant of the nature of triblock copolymer-lipid bilayer association. For dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-based biomembrane structures, polymers possessing a PPO chain length commensurate with the acyl chain dimensions of the lipid bilayer yield highly ordered, swollen lamellar structures consistent with well-integrated (into the lipid bilayer) PPO blocks. Triblock copolymers of lesser PPO chain length yield materials with structural characteristics similar to a simple dispersion of DMPC in water. Increasing the concentration (from 4 to 12 mol %) of well-integrated triblock copolymers enhances the structural ordering of the lamellar phase, while concentrations exceeding 16 mol % result in the formation of a hexagonal phase. Examination of temperature-induced changes in the structure of these mesophases (complex fluids) reveals that if the temperature is reduced sufficiently, all compositions exclude polymer and thus exhibit the characteristic SAXS pattern for hydrated DMPC bilayers. Increasing the temperature promotes better insertion of the polymers possessing PPO chain lengths sufficient for membrane insertion. No temperature-induced structural changes are observed in compositions prepared with PEO-PPO-PEO polymers that feature PPO length insufficient to permit full incorporation into the lipid bilayer.  相似文献   

19.
When a pure water sample is cooled it can remain in the liquid state at temperatures well below its melting point (0 degrees C). The initiation of the transition from the liquid state to ice is called nucleation. Substances that facilitate this transition so that it takes place at a relatively high sub-zero temperature are called ice nucleators. Many living organisms produce ice nucleators. In some cases, plausible reasons for their production have been suggested. In bacteria, they could induce frost damage to their hosts, giving the bacteria access to nutrients. In freeze-tolerant animals, it has been suggested that ice nucleators help to control the ice formation so that it is tolerable to the animal. Such ice nucleators can be called adaptive ice nucleators. There are, however, also examples of ice nucleators in living organisms where the adaptive value is difficult to understand. These ice nucleators might be structures with functions other than facilitating ice formation. These structures might be called incidental ice nucleators.  相似文献   

20.
Self-assembly plays an important role in the formation of many chiral biological structures and in the preparation of chiral functional materials. Therefore the control of chirality in synthetic or biological self-assembled systems is important either for the comprehension of recognition phenomena or to obtain materials with predictable and controllable properties. Circular dichroism was developed to study molecular chirality, however, because of its outstanding sensitivity to chiral perturbations of the system under investigation; it has been extended more recently to supramolecular chemistry. In particular, self-assembly processes leading to the formation of chiral supramolecular architectures (and eventually to gels or liquid crystal phases) can be monitored by CD. Furthermore, CD spectroscopy often allows one to obtain structural information on the assembled structures. This review deals with representative contributions to the study of supramolecular chirality by means of circular dichroism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号