首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of chloroform, halothane, enflurane and diethyl ether on the air/water interface was compared with adsorption on the dipalmitoylphosphatidylcholine monolayer, spread on the air/water interface, at four compressional states; 88.5, 77.0, 66.5 and 50.5 A2 surface area per phosphatidylcholine molecule. Anesthetics were administered from the gas phase. The affinities of these agents to the phosphatidylcholine monolayer varied according to the state of the monolayer. Chloroform and halothane showed a stronger affinity to the highly compressed phosphatidylcholine monolayer (50.5 A2) than to the expanded monolayer (88.5 A2) or to the air/water interface without the monolayer. Diethyl ether behaved in reverse; a stronger affinity to the expanded monolayer was exhibited than to the compressed monolayer. Enflurane showed the highest affinity to the intermediately compressed monolayer (77.0 A2). The adsorption isotherm of anesthetics to the monolayer was characterized by atypical Langmuir-type, in which available number of binding sites changed when anesthetics were adsorbed. The mode of adsorption onto the monolayer was dissimilar to adsorption onto air/water interface, where adsorption followed the Gibbs surface excess. A theory is presented to explain the above differences. The adsorbed anesthetic molecules do not stick to phosphatidylcholine molecules but penetrate into the monolayer lattice and occupy the phosphatidylcholine sites at the interface. Quantitative agreement between the theory and the experimental data was excellent. For the monolayer at 50.5 A2 compression, the changes in the transfer free energy accompanying the anesthetic adsorption from the gas phase to the monolayer were in the order of chloroform greater than halothane greater than enflurane greater than diethyl ether, in agreement with the clinical potencies.  相似文献   

2.
To alleviate the ethanol inhibition of Escherichia coli KO11 (ATCC 55124), during fermentation, online ethanol sequestration was achieved using F-600 activated carbon. Two separate schemes were tested, one involving direct addition of activated carbon to the fermentation flask for the purpose of in-situ adsorption and a second involving an externally located activated carbon packed bed. For the in-situ ethanol adsorption experiments, varying amounts of adsorbent were added to the medium at the start of the fermentation. The addition of the activated carbon in the fermentation broth resulted in increased glucose utilization and ethanol production for all flasks containing activated carbon. For the control flasks, approximately 75% of the available substrate was utilized before the fermentation was inhibited. The entire glucose supply of flasks containing activated carbon was depleted. Ethanol production was also increased from 28 g/L for the control containing no activated carbon to nearly 45 g/L (including the ethanol in the adsorbed phase) for the flasks containing activated carbon. The implementation of an externally located packed bed adsorber for the purpose of on-line ethanol removal was tested over a number of adsorption cycles to evaluate the performance of the adsorption bed and the ethanol productivity. Results indicate that maintaining ethanol fermentation medium concentrations below 20 ∼ 30 g/L extends and enhances ethanol productivity. After 3 cycles over a period of 180 h, an additional 80% ethanol was produced when compared to the control experiments, despite the suboptimal acidic pH of the medium.  相似文献   

3.
Effects of alkali metal chlorides on the properties of mixed negatively charged lipid bilayers are experimentally measured and numerically simulated. Addition of 20mol% of negatively charged phosphatidylserine to zwitterionic phosphatidylcholine strengthens adsorption of monovalent cations revealing their specificity, in the following order: Cs(+)相似文献   

4.
The Freundlich model was evaluated for use to assess the effect of heat on the adsorption capacity of an activated carbon for decolorizing/deodorizing corn zein. Because zein protein and its color/odor components are all adsorbed by activated carbon, a method to monitor their removal was needed. Yellow color is due to xanthophylls; a contributor to off-odor is diferuloylputrescine. The off-odor component absorbs ultraviolet (UV) light at about 325 nm and its removal coincides with removal of yellow color. A spectrophotometric method based on UV absorbances 280 nm for protein and 325 nm for the off-odor component was used to monitor their adsorptions onto activated carbon. Equilibrium studies were performed over temperature range from 25 to 60 degrees C for zein dissolved in 70% aqueous ethanol. Runs made at 55 degrees C adsorbed significantly more of the color/odor components than the protein.  相似文献   

5.
Volumes of 100 μl of serum were sufficient for the determination of therapeutic levels of phenobarbital. The isolation procedure was performed using a column method with a hydrophobic adsorbent, graphitized carbon black (Carbopack B). With this method the quantitative (98.1%) recovery of phenobarbital was measured. By suitable choice of experimental conditions, a highly selective purification of the drug can be obtained, thus eliminating various sources of error during quantitation due to the presence in the final samples of endogenous compounds. For the quantitation procedure, another type of graphitized carbon black (Carbopack C) suitably modified was used for gas chromatography. Calibration curves showed no chemisorption effect along the column even on injecting 5 ng of phenobarbital. Some practical aspects of the procedure for improving the reliability of the results are discussed.  相似文献   

6.
We simulate the adsorption of lysozyme on a solid surface, using Brownian dynamics simulations. A protein molecule is represented as a uniformly charged sphere and interacts with other molecules through screened Coulombic and double-layer forces. The simulation starts from an empty surface and attempts are made to introduce additional proteins at a fixed time interval that is inversely proportional to the bulk protein concentration. We examine the effect of ionic strength and bulk protein concentration on the adsorption kinetics over a range of surface coverages. The structure of the adsorbed layer is examined through snapshots of the configurations and quantitatively with the radial distribution function. We extract the surface diffusion coefficient from the mean square displacement. At high ionic strengths the Coulombic interaction is effectively shielded, leading to increased surface coverage. This effect is quantified with an effective particle radius. Clustering of the adsorbed molecules is promoted by high ionic strength and low bulk concentrations. We find that lateral protein mobility decreases with increasing surface coverage. The observed trends are consistent with previous theoretical and experimental studies.  相似文献   

7.
In this work the growth of a graphene monolayer on copper substrate, as typically achieved via chemical vapor deposition of propene (C3H6), was investigated by first-principles and kinetic Monte Carlo calculations. A comparison between calculated C1s core-level binding energies and electron spectroscopy measurements showed that graphene nucleates from isolated carbon atoms adsorbed on surface defects or sub-superficial layers upon hydrocarbon fragmentation. In this respect, ab initio nudged elastic band simulations yield the energetic barriers characterizing the diffusion of elemental carbon on the Cu(111) surface and atomic carbon uptake by the growing graphene film. Our calculations highlight a strong interaction between the growing film edges and the copper substrate, indicative of the importance of the grain boundaries in the epitaxy process. Furthermore, we used activation energies to compute the reaction rates for the different mechanisms occurring at the carbon–copper interface via harmonic transition state theory. Finally, we simulated the long-time system growth evolution through a kinetic Monte Carlo approach for different temperatures and coverage. Our ab initio and Monte Carlo simulations of the out-of-equilibrium system point towards a growth model strikingly different from that of standard film growth. Graphene growth on copper turns out to be a catalytic, thermally-activated process that nucleates from carbon monomers, proceeds by adsorption of carbon atoms, and is not self-limiting. Furthermore, graphene growth seems to be more effective at carbon supersaturation of the surface—a clear fingerprint of a large activation barrier for C attachment. Our growth model and computational results are in good agreement with recent X-ray photoelectron spectroscopy experimental measurements.  相似文献   

8.
Molecular simulations are used to study the adsorption of benzene at 300?K in atomistic models of disordered nanoporous carbons. These models, named as CS400, CS1000 and CS1000a, differ in density and chemical compositions, and reproduce the morphological and topological features present in real nanoporous carbons. We found that the adsorption phenomena depend upon the local structure of nanoporous carbons. To understand the effect of surface chemistry on adsorption and structure of confined benzene, functional groups (–COOH and –C=O) were added to these models. The presence of functional groups led to the onset of adsorption process at a low pressure. The carboxyl groups (–COOH) have a greater impact on adsorption as compared to carbonyl (–C=O) groups. The CS1000a models have wide micropores and thus it exhibits a jump in adsorption isotherm. The jump shifts towards lower pressure on the addition of functional groups, with –COOH groups showing a larger shift. The presence of functional groups also increases the isosteric heat of adsorption, with –COOH groups showing higher values. The coulombic contribution to total fluid–wall interaction energy is higher for –COOH functional groups and decreases on increasing pressure. Benzene confined in CS1000a models exhibit a liquid-like structure.  相似文献   

9.
In this study, molecular dynamics simulation is used to investigate the adsorption of an anticancer drug, doxorubicin, on bundles of functionalized single-walled carbon nanotubes (SWNTs) in an aqueous solution. Carboxylic group has been selected as the functional group. Molecular dynamics (MD) simulations are performed for both separated systems containing a SWNT bundle and a functionalized carbon nanotube bundle, and results are compared with existing experimental data. MD results show that doxorubicin can be adsorbed on CNTs using different methods such as entrapment within CNT bundle, attachment to the side wall of the CNT, and adsorption on the CNT inner cavity. For functionalized CNT, the adsorption of drugs on the functional groups is essential for predicting the enhancement of drug loading on the functionalized nanotubes. Furthermore, the adsorption behavior of doxorubicin on CNTs is fitted with Langmuir and Freundlich isotherm models. The results show that Langmuir model can predict the adsorption behavior of doxorubicin on CNTs more accurately than Freundlich model does. As predicted by this isotherm model, the adsorption process of doxorubicin on CNTs is relatively difficult, but it can be improved by increasing the functional groups on the CNTs surface.  相似文献   

10.
Abstract

Grand Ensemble Monte-Carlo simulations of adsorption of argon and nitrogen in silicalite have been performed using a new adsorbate/zeolite potential function. In both cases, a good agreement with zero coverage data (Henry law constant and isosteric heat of adsorption) has been obtained. For argon, the simulated isotherm at 77 K exhibits the experimentally observed step. This is attributed to an in site/off-site phase transition of the adsorbed phase. The calculated neutron diffraction spectra are in reasonable agreement with those obtained experimentally. Furthermore, we suggest, in light of recent 40Ar diffraction experiments of Tosi-Pellenq and Coulomb [18,44], that the shift in pressure between the simulated and the experimental isotherms corresponds to changes in the zeolite structure accompanied with the adsorbate phase transition itself. For nitrogen, only the first of the two experimentally observed steps is reproduced in the simulation. This step corresponds to an ordering of the adsorbed phase. The fact that the second step is missing in the simulated isotherm supports the hypothesis of a distortion of the zeolite framework under the stress of the adsorbed fluid at high loading.  相似文献   

11.
We present the results of simulations of a CCl4 monolayer adsorbed on a graphite surface. The CCl4 molecule was represented either by a shapeless superatom or by its atomic sites. The simulations were carried out over a large range of temperatures, from 20 K up to 340 K. We address the following problems: (1) the influence of molecular shape on the structure and stability of phases (particularly at low temperatures), and (2) the influence of the graphite corrugation on layer stability and mechanism of phase transitions. In particular, we discuss the possibility and conditions of the appearance of hexatic phase in the system. Figure Temperature dependence of Φ6 order parameter for CCl4 monolayer adsorbed onsmooth and corrugated surfaces, in the spherical Lennard Jones (LJ) approximation.For comparison, the order parameter calculated for MacDonald’s five-site potential is also presented  相似文献   

12.
Pulmonary surfactant forms a surface film that consists of a monolayer and a monolayer-associated reservoir. The extent to which surfactant components including the main component, dipalmitoylphosphatidylcholine (DPPC), are adsorbed into the monolayer, and how surfactant protein SP-A affects their adsorptions, is not clear. Transport of cholesterol to the surface region from dispersions of bovine lipid extract surfactant [BLES(chol)] with or without SP-A at 37 degrees C was studied by measuring surface radioactivities of [4-(14)C]cholesterol-labeled BLES(chol), and the Wilhelmy plate technique was used to monitor adsorption of monolayers. Results showed that transport of cholesterol was lipid concentration dependent. SP-A accelerated lipid adsorption but suppressed the final level of cholesterol in the surface. Surfactant adsorbed from a dispersion with or without SP-A was transferred via a wet filter paper to a clean surface, where the surface radioactivity and surface tension were recorded simultaneously. It was observed that 1) surface radioactivity was constant over a range of dispersion concentrations; 2) cholesterol and DPPC were transferred simultaneously; and 3) SP-A limited transfer of cholesterol.These results indicate that non-DPPC components of pulmonary surfactant can be adsorbed into the monolayer. Studies in the transfer of [1-(14)C]DPPC-labeled BLES(chol) to an equal or larger clean surface area revealed that SP-A did not increase selective adsorption of DPPC into the monolayer. Evaluation of transferred surfactant with a surface balance indicated that it equilibrated as a monolayer. Furthermore, examination of transferred surfactants from dispersions with and without prespread BLES(chol) monolayers revealed a functional contiguous association between adsorbed monolayers and reservoirs.  相似文献   

13.
Powder and granular activated charcoal were evaluated for ethanol adsorptivity from aqueous mixtures using an adsorption isotherm. Ethanol adsorption capacity was more pronounced at 25 degrees C as compared to 5, 15, and 40 degrees C. When pH of the ethanol-buffer mixture (0.09 ionic strength) was changed from acidic (2.3) to neutral and then to alkaline (11.2), ethanol adsorption was decreased. Increasing ionic strength of the ethanol-buffer mixtures from 0.05 to 0.09 enhanced ethanol adsorption but a further increase to 0.14 showed no significant effect. Ethanol adsorption was more efficient from an aqueous ethanol mixture as compared to semidefined and nondefined fermentation worts, respectively. Heating granular charcoal to 400 degrees C for 1 h and 600 degrees C for 3 h in N(2) increased ethanol adsorptivity and heating to 1000 degrees C (1 h) in CO(2) decreased it when ethanol was removed from dilute solutions by simple pass adsorption in a carbon packed column. Granular charcoal was superior to powdered charcoal and an inverse relationship was noted between the weight of the granular carbon bed in the column and ethanol adsorbed/g carbon. Decreasing the column feed flow rate from 7.5 to 2.0 L aqueous ethanol/min increased the adsorption rate.  相似文献   

14.
Despite the wide use of the real adsorbed solution theory to predict multicomponent adsorption equilibrium, the models used for the adsorbed phase activity coefficients are usually borrowed from the gas–liquid phase equilibria. In this work, the accuracy of the Wilson and NRTL models for evaluating adsorbed phase activity coefficients is tested using a 2D-lattice model. An accurate model for adsorbed-phase activity coefficients should have no problem in fitting adsorption data obtained using this simple lattice model. The results, however, show that the commonly used Wilson and NRTL models cannot describe the adsorbed phase activity coefficients for slightly non-ideal to strong non-ideal mixtures. Therefore, until new models for adsorbed phase activity coefficients are developed, we should use existing models for liquids with care. In the second part of this work, the use of Monte Carlo simulations on a segregated 2D-lattice model, for predicting adsorption of mixtures is investigated. The segregated model assumes that the competition for adsorption occurs at isolated adsorption sites, and that the molecules from each adsorption site interact with the bulk phase independently. Two binary mixtures in two adsorbent materials were used as case studies for testing the predictions of the segregated 2D-lattice model: the binary system CO2–N2 in the hypothetical pure silica zeolite PCOD8200029, with isolated adsorption sites and normal preference for adsorption, and the binary system CO2–C3H8 in pure silica mordenite (MOR), with isolated adsorption sites and inverse site preference. The segregated 2D-lattice model provides accurate predictions for the system CO2–N2 in PCOD8200029 but fails in predicting the adsorption behaviour of CO2–C3H8 in pure silica MOR. The predictions of the segregated ideal adsorbed solution theory model are superior to those of the 2D-lattice model.  相似文献   

15.
Biological availability of 23 alcohols, 16 aldehydes and 2 ketones was compared by the mini-test with chicks. Chicks can utilize methanol and ethanol, but not the alcohols of carbon chain from 3 to 9. Lauryl and myristyl alcohols were well utilized but those of higher carbon chain than 14 were not, mainly due to low digestibility. Glycerol and D-sorbitol were well utilized but not 4 other poly alcohols tested. Aldehydes and ketones with free carbonyl group showed low availability or even toxicity, but their derivatives with masked group showed no detrimental effect. Acetaldehyde, acetal and aldehydes of carbon chain longer than 9 were partially utilized.  相似文献   

16.
Interaction between nanoparticles (NPs) and pulmonary surfactant monolayer plays a very significant role in nanoparticle-based pulmonary drug delivery system. Previous researches have indicated that different properties of nanoparticles can affect their translocation across pulmonary surfactant monolayer. Here we performed coarse-grained molecular dynamics simulation aimed at nanoparticles’ surface charge density effect on their penetration behaviours. Several hydrophilic nanoparticles with different surface charge densities were modelled in the simulations. The results show that NPs’ surface charge density affects their translocation capability: the higher the surface charge densities of NPs are, the worse their translocation capability is. It will cause the structural changes of pulmonary surfactant monolayer, and inhibit the normal phase transition of the monolayer during the compression process. Besides, charged NPs can be adsorbed on the surface of the monolayer after translocation as a stable state, and the adsorption capability of NPs increases generally with the increase of surface charge densities. Our simulation results suggest that the study of nanoparticle-based pulmonary drug delivery system should consider the nanoparticles’ surface charge density effect in order to avoid biological toxicity and improve efficacy.  相似文献   

17.
The presence of cosolvents and co-solutes during the immobilization of lipases on hydrophobic supports may influence the extent of lipase immobilization and the long-term catalytic stability of the biocatalyst. Candida antarctica B lipase immobilization was examined on a hydrophobic surface, i.e., gold modified with a methyl-terminated, self-assembled alkylthiol layer. Lipase adsorption was monitored gravimetrically using a quartz crystal microbalance (QCM). Lipase activity was determined colorimetrically by following p-nitrophenol propionate hydrolysis. Adsorbed lipase topography was examined by atomic force microscopy (AFM). Lipase adsorption from low ionic strength aqueous buffer produced a uniform confluent protein monolayer. Inclusion of 10% (vol) ethanol in the buffer during immobilization resulted in a 33% adsorbed mass increase. Chemically similar cosolvents, all at 10% by volume in buffer, were also individually examined for their influence on CALB adsorption. Glycerol or 1-propanol increased mass adsorption by 10%, while 2-propanol increased mass adsorption by 33%. QCM dissipation values increased threefold with the inclusion of either ethanol or 2-propanol in the medium during lipase adsorption, indicating formation of multilayers of CALB. Partial multilayer formation using 10% ethanol was confirmed by AFM. Inclusion of 10% ethanol in the CALB immobilization buffer decreased the specific activity of the immobilized lipase by 37%. The formation of lipase multilayers in the presence of certain cosolvents thus results in lower specific activity, which might be due to either influences on lipase conformation or substrate active site accessibility.  相似文献   

18.
L. Sun  C. Peng  Y. Hu 《Molecular simulation》2013,39(12):989-997
Monte Carlo simulations for the adsorption of polymers including random copolymer, homopolymer, diblock copolymer and two kinds of triblock copolymers, respectively, in nonselective solvent at solid–liquid interface have been performed on a simple lattice model. The effect of polymer structure on adsorption properties was examined. In simulations, all polymeric molecules are modeled as self-avoiding linear chains composed of two segments A and B while A is attractive to the surface and B is non-attractive. It was found that for all polymers, the size distribution of various configurations is determined by the linked sequence of segments and the interaction energy between segment and surface. The results of simulation show that the adsorbed amount always increases with increasing bulk concentration but the adsorption layer thickness is mostly dependent on the adsorption energy at a fixed fraction of segments A. On the other hand, diblock copolymer has always the highest surface coverage and adsorbed amount, while random copolymers and homopolymers give generally the smallest surface coverage and adsorbed amount. It is shown that the sequence of polymer chains, i.e. molecular structure, is the most important factor in affecting adsorption properties at the same composition and interaction between segment and surface. The results also show that the adsorption behavior of random copolymers is remarkably different from that of block copolymers, but acting like homopolymer.  相似文献   

19.
Modeling of adsorption in nanopores   总被引:1,自引:0,他引:1  
Adsorption in nonporous materials has been studied using Grand Canonical Monte Carlo simulations. We discuss three types of materials: (a) a model of cylindrical pores with smooth walls, representing MCM-41 like materials, (b) a model of cylindrical pores with regular structured walls (model of carbon nanotubes) and (c) a material with crystalline wall structure (zeolites). Typical problems related to the stability of adsorbed layers have been analyzed. We have shown that the mechanism of adsorption is strongly dependent on the structure of the pore walls. In the case of amorphous walls it may lead to metastable configurations. In nanotubes, the ordered corrugation structure of walls determines the low temperature structure of the adsorbed system. In 3D ordered porous system, such as zeolites, the mechanism of adsorption is mostly determined by characteristic sites of adsorption.Figure Adsorbed atoms and energy fluctuations at the pressure of the first layer formation of krypton atoms: (a) instantaneous numbers of adsorbed atoms (per nm2 of the pore wall) as a function of the time of simulation (Monte Carlo steps) observed in a relatively long run, (b) the bimodal distribution of the energy fluctuations is a consequence of the behavior of the systems as shown in (a).  相似文献   

20.
The amyloid beta (1-40) peptide (A beta) is the main component of amyloid deposits found in the brain of patients afflicted with Alzheimer's disease. After treatment with hexafluoroisopropanol, commercial A beta is readily soluble in water and buffers at pH 7.4 and has an irregular secondary structure. The adsorption of A beta to the water-air interface and to the surface of the dipalmitoylphosphatidylethanolamine monolayer at a surface pressure pi close to zero leads to an increase in pressure up to 17 mN/m. When being adsorbed, the molecules of the peptide occupy a part of the monolayer surface, which leads to the compression of lipid molecules forming the monolayer. Further compression of the monolayer composed of the molecules of the lipid and peptide leads to the extrusion of the peptide from the monolayer. If the lipid monolayer is preliminarily (prior to the addition of the peptide to the liquid phase) compressed to pi = 30 mN/m, no adsorption of the peptide to the monolayer occurs. No changes in the structure of the dipalmitoylphosphatidylethanolamine monolayer were detected by the sliding X-ray diffraction method, indicating the absence of specific interactions. The method of reflection and absorption infrared spectroscopy makes it possible to determine the conformation of the adsorbed peptide and its orientation in the lipid monolayer. It was found that A beta has the conformation of a beta-fold oriented parallel to the interface, as it is the case with the adsorption of peptide molecules to the lipid monolayer at pi < 30 mN/m and upon adsorption to the interface that is not occupied by the lipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号