首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Precise regulation of the intracellular concentration of chloride [Cl?]i is necessary for proper cell volume regulation, transepithelial transport, and GABA neurotransmission. The Na–K–2Cl (NKCCs) and K–Cl (KCCs) cotransporters, related SLC12A transporters mediating cellular chloride influx and efflux, respectively, are key determinants of [Cl?]i in numerous cell types, including red blood cells, epithelial cells, and neurons. A common “chloride/volume-sensitive kinase”, or related system of kinases, has long been hypothesized to mediate the reciprocal but coordinated phosphoregulation of the NKCCs and the KCCs, but the identity of these kinase(s) has remained unknown. Recent evidence suggests that the WNK (with no lysine = K) serine–threonine kinases directly or indirectly via the downstream Ste20-type kinases SPAK/OSR1, are critical components of this signaling pathway. Hypertonic stress (cell shrinkage), and possibly decreased [Cl?]i, triggers the phosphorylation and activation of specific WNKs, promoting NKCC activation and KCC inhibition via net transporter phosphorylation. Silencing WNK kinase activity can promote NKCC inhibition and KCC activation via net transporter dephosphorylation, revealing a dynamic ability of the WNKs to modulate [Cl?]. This pathway is essential for the defense of cell volume during osmotic perturbation, coordination of epithelial transport, and gating of sensory information in the peripheral system. Commiserate with their importance in serving these critical roles in humans, mutations in WNKs underlie two different Mendelian diseases, pseudohypoaldosteronism type II (an inherited form of salt-sensitive hypertension), and hereditary sensory and autonomic neuropathy type 2. WNKs also regulate ion transport in lower multicellular organisms, including Caenorhabditis elegans, suggesting that their functions are evolutionarily-conserved. An increased understanding of how the WNKs regulate the Na–K–2Cl and K–Cl cotransporters may provide novel opportunities for the selective modulation of these transporters, with ramifications for common human diseases like hypertension, sickle cell disease, neuropathic pain, and epilepsy.  相似文献   

3.
Summary Experiments were performed usingin vitro perfused medullary thick ascending limbs of Henle (MTAL) and in suspensions of MTAL tubules isolated from mouse kidney to evaluate the effects of arginine vasopressin (AVP) on the K+ dependence of the apical, furosemide-sensitive Na+:Cl cotransporter and on transport-related oxygen consumption (QO2). In isolated perfused MTAL segments, the rate of cell swelling induced by removing K+ from, and adding onemm ouabain to, the basolateral solution [ouabain(zero-K+)] provided an index to apical cotransporter activity and was used to evaluated the ionic requirements of the apical cotransporter in the presence and absence of AVP. In the absence of AVP cotransporter activity required Na+ and Cl, but not K+, while in the presence of AVP the apical cotransporter required all three ions.86Rb+ uptake into MTAL tubules in suspension was significant only after exposure of tubules to AVP. Moreover,22Na+ uptake was unaffected by extracellular K+ in the absence of AVP while after AVP exposure22Na+ uptake was strictly K+-dependent. The AVP-induced coupling of K+ to the Na+:Cl cotransporter resulted in a doubling in the rate of NaCl absorption without a parallel increase in the rate of cellular22Na+ uptake or transport-related oxygen consumption. These results indicate that arginine vasopressin alters the mode of a loop diuretic-sensitive transporter from Na+:Cl cotransport to Na+:K+:2Cl cotransport in the mouse MTAL with the latter providing a distinct metabolic advantage for sodium transport. A model for AVP action on NaCl absorption by the MTAL is presented and the physiological significance of the coupling of K+ to the apical Na+:Cl cotransporter in the MTAL and of the enhanced metabolic efficiency are discussed.  相似文献   

4.
The furosemide-sensitive Na+-K+-2Cl cotransporter (NKCC2) is responsible for urine concentration and helps maintain systemic salt homeostasis. Its activity depends on trafficking to, and insertion into, the apical membrane, as well as on phosphorylation of conserved N-terminal serine and threonine residues. Vasopressin (AVP) signaling via PKA and other kinases activates NKCC2. Association of NKCC2 with lipid rafts facilitates its AVP-induced apical translocation and activation at the surface. Lipid raft microdomains typically serve as platforms for membrane proteins to facilitate their interactions with other proteins, but little is known about partners that interact with NKCC2. Yeast two-hybrid screening identified an interaction between NKCC2 and the cytosolic protein, annexin A2 (AnxA2). Annexins mediate lipid raft-dependent trafficking of transmembrane proteins, including the AVP-regulated water channel, aquaporin 2. Here, we demonstrate that AnxA2, which binds to phospholipids in a Ca2+-dependent manner and may organize microdomains, is codistributed with NKCC2 to promote its apical translocation in response to AVP stimulation and low chloride hypotonic stress. NKCC2 and AnxA2 interact in a phosphorylation-dependent manner. Phosphomimetic AnxA2 carrying a mutant phosphoacceptor (AnxA2-Y24D-GFP) enhanced surface expression and raft association of NKCC2 by 5-fold upon low chloride hypotonic stimulation, whereas AnxA2-Y24A-GFP and PKC-dependent AnxA2-S26D-GFP did not. As the AnxA2 effect involved only nonphosphorylated NKCC2, it appears to affect NKCC2 trafficking. Overexpression or knockdown experiments further supported the role of AnxA2 in the apical translocation and surface expression of NKCC2. In summary, this study identifies AnxA2 as a lipid raft-associated trafficking factor for NKCC2 and provides mechanistic insight into the regulation of this essential cotransporter.  相似文献   

5.
红细胞的Na—K—Cl联合转运系统   总被引:1,自引:0,他引:1  
  相似文献   

6.
Summary Cl influx at the luminal border of the epithelium of rabbit gallbladder was measured by 45-sec exposures to36Cl and3H-sucrose (as extracellular marker). Its paracellular component was evaluated by the use of 25mm SCN which immediately and completely inhibits Cl entry into the cell. Cellular influx was equal to 16.7eq cm–2 hr–1 and decreased to 8.5eq cm–2 hr–1 upon removal of HCO 3 from the bathing media and by bubbling 100% O2 for 45 min. When HCO 3 was present, cellular influx was again about halved by the action of 10–4 m acetazolamide, 10–5 to 10–4 m furosemide, 10–5 to 10–4 m 4-acetamido-4-isothiocyanostilbene-2,2-disulfonate (SITS), 10–3 m amiloride. The effects of furosemide and SITS were tested at different concentrations of the inhibitor and with different exposure times: they were maximal at the concentrations reported above and nonadditive. In turn, the effects of amiloride and SITS were not additive. Acetazolamide reached its maximal action after an exposure of about 2 min. When exogenous HCO 3 was absent, the residual cellular influx was insensitive to acetazolamide, furosemide and SITS. When exogenous HCO 3 was present in the salines, Na+ removal from the mucosal side caused a slow decline of cellular Cl influx; conversely, it immediately abolished cellular Cl influx in the absence of HCO 3 . In conclusion, about 50% of cellular influx is sensitive to HCO 3 , inhibitable by SCN, acetazolamide, furosemide, SITS and amiloride and furthermore slowly dependent on Na+. The residual cellular influx is insensitive to bicarbonate, inhibitable by SCN, resistant to acetazolamide, furosemide, SITS and amiloride, and immediately dependent on Na+. Thus, about 50% of apical membrane NaCl influx appears to result from a Na+/H+ and Cl/HCO 3 exchange, whereas the residual influx seems to be due to Na+–Cl contranport on a single carrier. Whether both components are simultaneously present or the latter represents a cellular homeostatic counterreaction to the inhibition of the former is not clear.  相似文献   

7.
Hans Komnick 《Protoplasma》1962,55(2):414-418
Ohne Zusammenfassung  相似文献   

8.
Summary Gluconate substitution for serosal Cl reduces the transepithelial short-circuit current (I sc) and depolarizes shortcircuited frog skins. These effects could result either from inhibition of basolateral K+ conductance, or from two actions to inhibit both apical Na+ permeability (P Na ap ) and basolateral pump activity. We have addressed this question by studying whole-and split-thickness frog skins. Intracellular Na+ concentration (C Na c ) andP Na ap have been monitored by measuring the currentvoltage relationship for apical Na+ entry. This analysis was conducted by applying trains of voltage pulses, with pulse durations of 16 to 32 msec. Estimates ofP Na ap ) and CNa/c were not detectably dependent on pulse duration over the range 16 to 80 msec. Serosal Cl replacement uniformly depolarized short-circuited tissues. The depolarization was associated with inhibition ofI sc across each split skin, but only occasionally across the whole-thickness preparations. This difference may reflect the better ionic exchange between the bulk medium and the extracellular fluid in contact with the basolateral membranes, following removal of the underlying dermis in the split-skin preparations.P Na ap was either unchanged or increased, and CNa/c either unchanged or reduced after the anionic replacement. These data are incompatible with the concept that serosal Cl replacement inhibitsP Na ap and Na, K-pump activity. Gluconate substutition likely reduces cell volume, triggering inhibition of the basolateral K+ channels, consistent with the data and conclusions of S.A. Lewis, A.G. Butt, M.J. Bowler, J.P. Leader and A.D.C Macknight (J. Membrane Biol. 83:119–137, 1985) for toad bladder. The resulting depolarization reduces the electrical force favoring apical Na+ entry. The volume-conductance coupling serves to conserve volume by reducing K+ solute loss. Its molecular basis remains to be identified.  相似文献   

9.
10.
Summary The Na+ requirement for active, electrogenic Cl absorption byAmphiuma small intestine was studied by tracer techniques and double-barreled Cl-sensitive microelectrodes. Addition of Cl to a Cl-free medium bathingin vitro intestinal segments produced a saturable (K m =5.4mm) increase in shortcircuit current (I sc) which was inhibitable by 1mm SITS. The selectivity sequence for the anion-evoked current was Cl=Br>SCN>NO 3 >F=I. Current evoked by Cl reached a maximum with increasing medium Na concentration (K m =12.4mm). Addition of Na+, as Na gluconate (10mm), to mucosal and serosal Na+-free media stimulated the Cl current and simultaneously increased the absorptive Cl flux (J ms Cl ) and net flux (J net Cl ) without changing the secretory Cl flux (J sm Cl ). Addition of Na+ only to the serosal fluid stimulatedJ ms Cl much more than Na+ addition only to the mucosal fluid in paired tissues. Serosal DIDS (1mm) blocked the stimulation. Serosal 10mm Tris gluconate or choline gluconate failed to stimulateJ ms Cl . Intracellular Cl activity (a Cl i ) in villus epithelial cells was above electrochemical equilibrium indicating active Cl uptake. Ouabain (1mm) eliminated Cl accumulation and reduced the mucosal membrane potential m over 2 to 3 hr. In contrast, SITS had no effect on Cl accumulation and hyperpolarized the mucosal membrane. Replacement of serosal Na+ with choline eliminated Cl accumulation while replacement of mucosal Na+ had no effect. In conclusion by two independent methods active electrogenic Cl absorption depends on serosal rather than mucosal Na+. It is concluded that Cl enters the cell via a primary (rheogenic) transport mechanism. At the serosal membrane the Na+ gradient most likely energizes H+ export and regulates mucosal Cl accumulation perhaps by influencing cell pH or HCO 3 concentration.  相似文献   

11.
Transepithelial fluid transport was measured gravimetrically in rabbit gallbladder (and net Na+ transport was calculated from it), at 27 degrees C, in HCO(3-)-free bathing media containing 10(-4) M acetazolamide. Whereas luminal 10(-4) M bumetanide or 10(-4) M 4-acetamido-4'-iso-thiocyanostilbene-2,2'-disulfonate (SITS) did not affect fluid absorption, 25 mM SCN- abolished it; hydrochlorothiazide (HCTZ) in the luminal medium reduced fluid absorption from 28.3 +/- 1.6 (n = 21) to 8.6 +/- 1.6 microliters cm-2 hr-1 (n = 10), i.e., to about 30%. This maximum effect was already obtained at 10(-3) M concentration; the apparent IC50 was about 2 x 10(-4) M. The residual fluid absorption, again insensitive to SITS, was completely inhibited by SCN- or bumetanide. Cl- influx at the luminal border of the epithelium, measured under the same conditions and corrected for the extracellular space and paracellular influx, proved insensitive to 10(-4) M bumetanide, but was slowly inhibited by 10(-3) M HCTZ, with maximum inhibition (about 54%) reached after a 10-min treatment; it subsequently rose again, in spite of the presence of HCTZ. However, if the epithelium, treated with HCTZ, was exposed to 10(-4) M bumetanide during the measuring time (45 sec), inhibition was completed and the subsequent rise of Cl- influx eliminated. Intracellular Cl- accumulation with respect to the predicted activity value at equilibrium decreased significantly upon exposure to 10(-3) M HCTZ, reached a minimum within 15-30 min of treatment, then rose again significantly at 60 min. Simultaneous exposure to HCTZ and bumetanide decreased the accumulation to a significantly larger extent as compared to HCTZ alone, already in 15 min, and impeded the subsequent rise. Intracellular K+ activity rose significantly within 30 min treatment with HCTZ; the increase proved bumetanide dependent. The results obtained show that Na(+)-Cl- symport, previously detected under control conditions, is the HCTZ-sensitive type; its inhibition elicits bumetanide-sensitive Na(+)-K(+)-2Cl- cotransport. Thus, the three forms of neutral Na(+)-Cl(-)-coupled transport so far evidenced in epithelia, Na+/H+, Cl-/HCO3- double exchange (in the presence of exogenous bicarbonate), HCTZ-sensitive Na(+)-Cl- symport and bumetanide-sensitive Na(+)-K(+)-2Cl- cotransport, are all present in the apical membrane of rabbit gallbladder.  相似文献   

12.
This study examines the action of agonists and antagonists of P2 receptors on mouse mesenteric artery contractions and the possible involvement of these signaling pathways in myogenic tone (MT) evoked by elevated intraluminal pressure. Both ATP and its non-hydrolyzed analog α,β-ATP triggered transient contractions that were sharply decreased in the presence of NF023, a potent antagonist of P2X1 receptors. In contrast, UTP and UDP elicited sustained contractions which were suppressed by MRS2567, a selective antagonist of P2Y6 receptors. Inhibition of Na+, K+, 2Cl cotransport (NKCC) with bumetanide led to attenuation of contractions in UTP- but not ATP-treated arteries. Both UTP-induced contractions and MT were suppressed by MRS2567 and bumetanide but were insensitive to NF023. These data implicate a P2Y6-mediated, NKCC-dependent mechanism in MT of mesenteric arteries. The action of heightened intraluminal pressure on UTP release from mesenteric arteries and its role in the triggering of P2Y6-mediated signaling should be examined further.  相似文献   

13.
To examine the involvement of Na+,K+,2Cl cotransport in monovalent ion fluxes in vascular smooth muscle cells (VSMC), we compared the effect of bumetanide on 86Rb, 36Cl and 22Na uptake by quiescent cultures of VSMC from rat aorta. Under basal conditions, the values of bumetanide-sensitive (BS) inward and outward 86Rb fluxes were not different. Bumetanide decreased basal 86Rb uptake by 70–75% with a K i of ∼0.2–0.3 μm. At concentrations ranging up to 1 μm, bumetanide did not affect 36Cl influx and reduced it by 20–30% in the range from 3 to 100 μm. In contrast to 86Rb and 36Cl influx, bumetanide did not inhibit 22Na uptake by VSMC. BS 86Rb uptake was completely abolished in Na+- or Cl-free media. In contrast to 86Rb, basal BS 36Cl influx was not affected by Na+ o and K+ o . Hyperosmotic and isosmotic shrinkage of VSMC increased 86Rb and 36Cl influx to the same extent. Shrinkage-induced increments of 86Rb and 36Cl uptake were completely abolished by bumetanide with a K i or ∼0.3 μm. Shrinkage did not induce BS 86Rb and 36Cl influx in (Na+ or Cl)- and (Na+ or K+)-depleted media, respectively. In the presence of an inhibitor of Na+/H+ exchange (EIPA), neither hyperosmotic nor isosmotic shrinkage activated 22Na influx. Bumetanide (1 μm) did not modify basal VSMC volume and intracellular content of sodium, potassium and chloride but abolished the regulatory volume increase in isosmotically-shrunken VSMC. These data demonstrate the absence of the functional Na+,K+,2Cl cotransporter in VSMC and suggest that in these cells basal and shrinkage-induced BS K+ influx is mediated by (Na+ o + Cl o )-dependent K+/K+ exchange and Na+ o -dependent K+,Cl cotransport, respectively. Received: 30 January 1996/Revised: 20 May 1996  相似文献   

14.
Summary Unidirectional 22Na+ and 36Cl fluxes were determined in short-circuited, stripped rumen mucosa from sheep by using the Ussing chamber technique. In both CO2/HCO 3 -containing and CO2/HCO 3 -free solutions, replacement of gluconate by short-chain fatty acids (SCFA, 39 mM) significantly enhanced mucosal-toserosal Na+ absorption without affecting the Cl transport in the same direction. Short-chain fatty acid stimulation of Na+ transport was at least partly independent of Cl and could almost completely be abolished by 1 mM mucosal amiloride, while stimulation of Na+ transport was enhanced by lowering the mucosal pH from 7.3 to 6.5. Similar to the SCFA action, raising the PCO2 in the mucosal bathing solution led to an increase in the amiloride-sensitive mucosal-to-serosal Na+ flux. Along with its effect on sodium transport, raising the PCO2 also stimulated chloride transport. The results are best explained by a model in which undissociated SCFA and/or CO2 permeate the cell membrane and produce a raise in intracellular H+ concentration. This stimulates an apical Na+/H+ exchange, leading to increased Na+ transport. The stimulatory effect of CO2 on Cl transport is probably mediated by a Cl/HCO 3 exchange mechanism in the apical membrane. Binding of SCFA anions to that exchange as described for the rat distal colon (Binder and Mehta 1989) probably does not play a major role in the rumen.Abbreviations DIDS 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid - G t transepithelial conductance (mS·cm-2) - HSCFA undissociated short-chain fatty acids - J ms mucosal-to-serosal flux (Eq · cm-2 · h-1) - J net net flux (Eq · cm-2 · h-1) - J sm serosal-to-mucosal flux (Eq · cm-2 · h-1) - PD transepithelial potential difference (mV) - SCFA dissociated short-chain fatty acids - SCFA short-chain fatty acids  相似文献   

15.
Summary The bumetanide-sensitive uptake of Na+, K(Rb) and Cl has been measured at 21°C in ferrent red cells treated with (SITS+DIDS) to minimize anion flux via capnophorin (Band 3). During the time course of the influx experiments tracer uptake was a first-order rate process. At normal levels of external Na+ (150mm) the bumetanide-sensitive uptake of K+ was dependent on Cl and represented almost all of the K+ uptake, the residual flux demonstrating linear concentration dependence. The uptake of Na+ and Cl was only partially inhibited by bumetanide indicating that pathways other than (Na+K+Cl) cotransport participate in these fluxes. The diuretic-sensitive uptake of Na+ or Cl was, however, abolished by the removal of K+ or the complementary ion indicating that bumetanide-sensitive fluxes of Na+, K+ and Cl are closely coupled. At very low levels of [Na] o (<5mm) K+ influx demonstrated complex kinetics, and there was evidence of the unmasking of a bumetanide-sensitive Na+-independent K+ transport pathway. The stoichiometry of bumetanide-sensitive tracer uptake was 2Na1K3Cl both in cells suspended in a low and a high K+-containing medium. The bumetanide-sensitive flux was markedly reduced by ATP depletion. We conclude that a bumetanide-sensitive cotransport of (2Na1K3Cl) occurs as an electroneutral complex across the ferret red cell membrane.  相似文献   

16.
Ehrlich ascites tumor cell membrane potential (Vm) and intracellular Na+, K+ and Cl activities were measured under steady-state conditions in normal saline medium (Na+ = 154, K+ = 6, Cl = 150 mequiv./l). Membrane potential was estimated to be −23.3 ± 0.8 mV using glass microelectrodes. Intracellular ion activities were estimated with similar glass electrodes rendered ion-selective by incorporation of ion-specific ionophores. Measurements of Vm and ion-activity differences were made in the same populations of cells. Under these conditions the intracellular Na+, K+ and Cl activities are 4.6 ± 0.5; 68.3 ± 8.0; and 43.6 ± 2.1 mequiv./l, respectively. The apparent activity coefficients for Na+ and K+ are 0.18 ± 0.02 and 0.41 ± 0.05 respectively. These are significantly lower than the activity coefficients expected for the ions in physiological salt solutions (0.71 and 0.73, respectively). The activity coefficient for intracellular Cl (0.67 ± 0.03), however, is close to that of the medium (0.73), and the transmembrane electrochemical potential difference for Cl is not different from zero. The results establish that the energy available from the Na+ electrochemical gradient is much greater than previously estimated from chemical measurements.  相似文献   

17.
Our previously published whole-cell patch-clamp studies on the cells of the intralobular (granular) ducts of the mandibular glands of male mice revealed the presence of an amiloride-sensitive Na+ conductance in the plasma membrane. In this study we demonstrate the presence also of a Cl conductance and we show that the sizes of both conductances vary with the Cl concentration of the fluid bathing the cytosolic surface of the plasma membrane. As the cytosolic Cl concentration rises from 5 to 150 mmol/liter, the size of the inward Na+ current declines, the decline being half-maximal when the Cl concentration is approximately 50 mmol/liter. In contrast, as cytosolic Cl concentration increases, the inward Cl current remains at a constant low level until the Cl concentration exceeds 80 mmol/liter, when it begins to increase. Studies in which Cl in the pipette solution was replaced by other anions indicate that the Na+ current is suppressed by intracellular Br-, Cl and NO 3 - but not by intracellular I-, glutamate or gluconate. Our studies also show that the Cl conductance allows passage of Cl and Br- equally well, I-less well, and NO 3 - , glutamate and gluconate poorly, if at all. The findings with NO 3 - are of particular interest because they show that suppression of the Na+ current by a high intracellular concentration of a particular anion does not depend on actual passage of that anion through the Cl conductance. In mouse granular duct cells there is, thus, a reciprocal regulation of Na+ and Cl conductances by the cytosolic Cl concentration. Since the cytosolic Cl concentration is closely correlated with cell volume in many epithelia, this reciprocal regulation of Na+ and Cl conductances may provide a mechanism by which ductal Na+ and Cl transport rates are adjusted so as to maintain a stable cell volume.This project was supported by the National Health and Medical Research Council of Australia. We thank Professor P. Barry (University of New South Wales) for assistance with the junction potential measurements.  相似文献   

18.
Squid giant axons recover from acid loads by activating a Na(+)-driven Cl-HCO(3) exchanger. We internally dialyzed axons to an intracellular pH (pH( i )) of 6.7, halted dialysis and monitored the pH(i) recovery (increase) in the presence of ATP or other nucleotides, using cyanide to block oxidative phosphorylation. We computed the equivalent acid-extrusion rate (J(H)) from the rate of pH(i) increase and intracellular buffering power. In experimental series 1, we used dialysis to vary [ATP](i), finding that Michaelis-Menten kinetics describes J (H) vs. [ATP](i), with an apparent V(max) of 15.6 pmole cm(-2 )s(-1) and K (m) of 124 microM. In series 2, we examined ATP gamma S, AMP-PNP, AMP-PCP, AMP-CPP, GMP-PNP, ADP, ADP beta S and GDP beta S to determine if any, by themselves, could support transport. Only ATP gamma S (8 mM) supported acid extrusion; ATP gamma S also supported the HCO (3)(-) -dependent (36)Cl efflux expected of a Na(+)-driven Cl-HCO(3) exchanger. Finally, in series 3, we asked whether any nucleotide could alter J (H) in the presence of a background [ATP](i) of approximately 230 microM (control J (H) = 11.7 pmol cm(-2 )s(-1)). We found J (H) was decreased modestly by 8 mM AMP-PNP (J (H) = 8.0 pmol cm(-2 )s(-1)) but increased modestly by 1 mM ADP beta S (J (H) = 16.0 pmol cm(-2 )s(-1)). We suggest that ATP gamma S leads to stable phosphorylation of the transporter or an essential activator.  相似文献   

19.
The Cl/HCO 3 exchange mechanism usually postulated to occur in gastric mucosa cannot account for the Na+-dependent electrogenic serosal to mucosal Cl transport often observed. It was recently suggested that an additional Cl transport mechanism driven by the Na+ electrochemical potential gradient may be present on the serosal side of the tissue. To verify this, we have studied Cl transport in guinea pig gastric mucosa. Inhibiting the (Na+, K+) ATPase either by serosal addition of ouabain or by establishing K+-free mucosal and serosal conditions abolished net Cl transport. Depolarizing the cell membrane potential with triphenylmethylphosphonium (a lipid-soluble cation), and hence reducing both the Na+ and Cl electrochemical potential gradients, resulted in inhibition of net Cl flux. Reduction of short-circuit current on replacing Na+ by choline in the serosal bathing solution was shown to be due to inhibition of Cl transport. Serosal addition of diisothiocyanodisulfonic acid stilbene (an inhibitor of anion transport systems) abolished net Cl flux but not net Na+ flux. These results are compatible with the proposed model of a Cl/Na+ cotransport mechanism governing serosal Cl entry into the secreting cells. We suggest that the same mechanism may well facilitate both coupled Cl/Na+ entry and coupled HCO 3 /Na+ exit on the serosal side of the tissue.  相似文献   

20.
Summary In the epithelium of rabbit gallbladder, in the nominal absence of bicarbonate, intracellular Cl activity is about 25mm, about 4 times higher than intracellular Cl activity at the electrochemical equilibrium. It is essentially not affected by 10–4 m acetazolamide and 10–4 m 4-acetamido-4-isothiocyanostilbene-2,2-disulfonate (SITS) even during prolonged exposures; it falls to the equilibrium value by removal of Na+ from the lumen without significant changes of the apical membrane potential difference. Both intracellular Cl and Na+ activities are decreased by luminal treatment with 25mm SCN; the initial rates of change are not significantly different. In addition, the initial rates of change of intracellular Cl activity are not significantly different upon Na+ or Cl entry block by the appropriate reduction of the concentration of either ion in the luminal solution. Luminal K+ removal or 10–5 m bumetanide do not affect intracellular Cl and Na+ activities or Cl influx through the apical membrane. It is concluded that in the absence of bicarbonate NaCl entry is entirely due to a Na+–Cl symport on a single carrier which, at least under the conditions tested, does not cotransport K+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号