首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present results of molecular dynamics simulations for diffusion of Na+ ion in water-filled carbon nanotubes (CNTs) at 25°C using the extended simple point charge water potential. Simulation results indicate the general trend that the diffusion coefficients of Na+ ion and water molecule in CNTs decrease with an increase in water density and are larger than those in the bulk solution. The average potential energies of ion–water and water–water, the radial distribution functions, the hydration numbers and the residence times of the hydrated water molecules are discussed. The classical solventberg picture describes Na+ ion in water adequately for systems with the small values of diffusion coefficients.  相似文献   

2.
Previously, functional mapping of channels has been achieved by measuring the passage of net charge and of specific ions with electrophysiological and intracellular fluorescence imaging techniques. However, functional mapping of ion channels using extracellular ion-selective microelectrodes has distinct advantages over the former methods. We have developed this method through measurement of extracellular K+ gradients caused by efflux through Ca2+-activated K+ channels expressed in Chinese hamster ovary cells. We report that electrodes constructed with short columns of a mechanically stable K+-selective liquid membrane respond quickly and measure changes in local [K+] consistent with a diffusion model. When used in close proximity to the plasma membrane (<4 μm), the ISMs pose a barrier to simple diffusion, creating an ion trap. The ion trap amplifies the local change in [K+] without dramatically changing the rise or fall time of the [K+] profile. Measurement of extracellular K+ gradients from activated rSlo channels shows that rapid events, 10-55 ms, can be characterized. This method provides a noninvasive means for functional mapping of channel location and density as well as for characterizing the properties of ion channels in the plasma membrane.  相似文献   

3.
Diffusion Rates in Disrupted Bacterial Cells   总被引:3,自引:0,他引:3       下载免费PDF全文
The viscosity of the material resulting from squeezing Escherichia coli cells through an orifice in a French pressure cell has been shown to be very high and variable with temperature. Diffusion constants in this medium have been determined for sucrose, dextran, and beta galactosidase. The values found are: 1.07 × 10-6cm2/second for sucrose, 0.36 × 10-6cm2/second for dextran, and 0.025 × 10-6cm2/second for beta galactosidase. The results agree with the idea that there is much interstitial space available for diffusion of small molecules in the cell medium in spite of the high viscosity, but that large molecules will be transported less readily.  相似文献   

4.
Cells of the marine alga Coccolithus pelagicus (Wal-lich)J. Schiller grown in axenic cultures were homogenized and fractionated. The distribution of organelle markers was assessed enzymatically after centrifugation through zonal, density, and flotation gradients made with sucrose, sorbitol, or Percoll. Mitochondria (1.19 g·cm-3) and chloroplasts (1.15 g·cm-3) were recovered in sucrose gradients at densities similar to those observed for higher plants and most algae. The position of endoplasmic reticulum and plasma membrane in the gradients was monitored by NADPH cytochrome c reductase and vanadate-sensitive Mg2+-ATPase, respectively. Higher plant Golgi markers, latent undine diphosphatase (UDPase) and glucan synthase I, were colocalized at a density range including two peaks of activity at 1.13–1.15 g·cm-3. Bound calcium was associated with high density (1.15 g·cm-3) membranes. Ca2+-stimulated ATPase was found at high levels on membranes that did not coisolate with the latent UDPase-containing membranes. The Ca2+-stimulated ATPase, a possible participant during calcification, was associated with a chloroplast-enriched fraction in all the organelle separation systems. However, about 30% of the total activity was separated from both the chloroplasts and Golgi on 0–70% Percoll gradients containing 0.4 M sucrose. The possible relationship of the Golgi and the high-density organelle exhibiting Ca2+-stimulated ATPase to coccolithogenesis and the process of calcification and crystal formation is discussed.  相似文献   

5.
We present a pulse scheme that exploits methyl 1H triple-quantum (TQ) coherences for the measurement of diffusion rates of slowly diffusing molecules in solution. It is based on the well-known stimulated echo experiment, with encoding and decoding of TQ coherences. The size of quantifiable diffusion coefficients is thus lowered by an order of magnitude with respect to single-quantum (SQ) approaches. Notably, the sensitivity of the scheme is high, approximately ¾ that of the corresponding single quantum experiment, neglecting relaxation losses, and on the order of a factor of 4 more sensitive than a previously published sequence for AX3 spin systems (Zheng et al. in JMR 198:271–274, 2009) for molecules that are only 13C labeled at the methyl carbon position. Diffusion coefficients measured from TQ- and SQ-based experiments recorded on a range of protein samples are in excellent agreement. We present an application of this technique to the study of phase-separated proteins where protein concentrations in the condensed phase can exceed 400 mg/mL, diffusion coefficients can be as low as ~10?9 cm2s?1 and traditional SQ experiments fail.  相似文献   

6.
Trogtalite CoSe2 nanobuds encapsulated into boron and nitrogen codoped graphene (BCN) nanotubes (CoSe2@BCN‐750) are synthesized via a concurrent thermal decomposition and selenization processes. The CoSe2@BCN‐750 nanotubes deliver an excellent storage capacity of 580 mA h g?1 at current density of 100 mA g?1 at 100th cycle, as the anode of a sodium ion battery. The CoSe2@BCN‐750 nanotubes exhibit a significant rate capability (100–2000 mA g?1 current density) and high stability (almost 98% storage retention after 4000 cycles at large current density of 8000 mA g?1). The reasons for these excellent storage properties are illuminated by theoretical calculations of the relevant models, and various possible Na+ ion storage sites are identified through first‐principles calculations. These results demonstrate that the insertion of heteroatoms, B–C, N–C as well as CoSe2, into BCN tubes, enables the observed excellent adsorption energy of Na+ ions in high energy storage devices, which supports the experimental results.  相似文献   

7.
Using density functional theory, we studied the adsorption of an N2O molecule onto pristine and Si-doped AlN nanotubes in terms of energetic, geometric, and electronic properties. The N2O is weakly adsorbed onto the pristine tube, releasing energies in the range of ?1.1 to ?5.7 kcal mol-1. The electronic properties of the pristine tube are not influenced by the adsorption process. The N2O molecule is predicted to strongly interact with the Si-doped tube in such a way that its oxygen atom diffuses into the tube wall, releasing an N2 molecule. The energy of this reaction is calculated to be about ?103.6 kcal mol-1, and the electronic properties of the Si-doped tube are slightly altered.  相似文献   

8.
Summary Diffusion measurements of glucose in a crosslinked water-swollen protein matrix containingStreptomyces thermovulgaris strain 127, are described. Solute diffusion coefficients in the gel phase were found to be considerably lower than for free diffusion. The range of diffusion coefficients was 0.83×10−10 to 2.68×10−10m2/s at corresponding ratios to free diffusion values 0.11 to 0.38. It is shown that polymer structure does not pose any significant effect on mass transfer for the small glucose molecule.  相似文献   

9.
Molecular dynamics simulations were used to assess the transport of glutamate, water and ions (Na+ and Cl) in a single wall carbon nanopore. The spatial profiles of Na+ and Cl ions are largely determined by the pore wall charges. Co-ions are repelled whereas the counter-ions are attracted by the pore charges, but this ‘rule’ breaks down when the water concentration is set to a level significantly below that in the physiological bulk solution. In such cases water is less able to counteract the ion-wall interactions (electrostatic or non-electrostatic), co-ions are layered near the counter-ions attracted by the wall charges and are thus layered as counter-ions. Glutamate is concentrated near the pore wall even at physiological water concentration, and irrespective of whether the pore wall is neutral or charged (positively or negatively), and its peak levels are up to 40 times above mean values. The glutamate is thus always layered as a counter-ion. Layering of water near the wall is independent of charges on the pore wall, but its peak levels near the wall are ‘only’ 6-8 times above the pore mean values. However, if the mean concentration of water is significantly below the level in the physiological bulk solution, its layering is enhanced, whereas its concentration in the pore center diminishes to very low levels. Reasons for such a ‘paradoxical’ behavior of molecules (glutamate and water) are that the non-electrostatic interactions are (except at very short distances) attractive, and electrostatic interactions (between the charged atoms of the glutamate or water and the pore wall) are also attractive overall. Repulsive interactions (between equally charged atoms) exist, and they order the molecules near the wall, whereas in the pore center the glutamate (and water) angles are largely randomly distributed, except in the presence of an external electric field. Diffusion of molecules and ions is complex. The translational diffusion is in general both inhomogeneous and anisotropic. Non-electrostatic interactions (ion-wall, glutamate-wall or water-wall) powerfully influence diffusion. In the neutral nanopore the effective axial diffusion constants of glutamate, water and Na+ and Cl ions are all < 10% of their values in the bulk, and the electrostatic interactions can reduce them further. Diffusion of molecules and ions is further reduced if the water concentration in the pore is low. Glutamate is slowed more than water, and ions are reduced the most especially co-ions. In conclusion the interfacial interactions influence the spatial distribution of glutamate, water and ions, and regulate powerfully, in a complex manner and over a very wide range their transport through nanosize pores.  相似文献   

10.
Summary A method of supplying CO2 to photosynthetic algal cultures by diffusion through a gas-permeable membrane was developed. The diffusion of CO2 across a silicone membrane could be described by Fick's Laws of Diffusion, with a permeability constant of 1.92x10-7 m2/min. By the manipulation of tubing dimensions and the partial pressure or static pressure of CO2 gas within the tubing, the rate of CO2 supply could be controlled. Pure CO2 was applied to the cultivation of Chlorella pyrenoidosa with 100% utilization and without the side effect of CO2 inhibition.  相似文献   

11.
The temperature dependence of permeation across human red cell membranes has been determined for a series of hydrophilic and lipophilic solutes, including urea and two methyl substituted derivatives, all the straight-chain amides from formamide through valeramide and the two isomers, isobutyramide and isovaleramide. The temperature coefficient for permeation by all the hydrophilic solutes is 12 kcal mol-1 or less, whereas that for all the lipophilic solutes is 19 kcal mol-1 or greater. This difference is consonant with the view that hydrophilic molecules cross the membrane by a path different from that taken by the lipophilic ones. The thermodynamic parameters associated with lipophile permeation have been studied in detail. ΔG is negative for adsorption of lipophilic amides onto an oil-water interface, whereas it is positive for transfer of the polar head from the aqueous medium to bulk lipid solvent. Application of absolute reaction rate theory makes it possible to make a clear distinction between diffusion across the water-red cell membrane interface and diffusion within the membrane. Diffusion coefficients and apparent activation enthalpies and entropies have been computed for each process. Transfer of the polar head from the solvent into the interface is characterized by ΔG = 0 kcal mol-1 and ΔS negative, whereas both of these parameters have large positive values for diffusion within the membrane. Diffusion within the membrane is similar to what is expected for diffusion through a highly associated viscous fluid.  相似文献   

12.
The diffusion coefficients D (cm2/s), of four monovalent cations K+, Na+, Rb+ and Cs+ and of Ca2+ have been measured in phosphatidylcholine/water lamellar phase as a function of phase hydration and temperature and in the presence of divalent cations. Diffusion rates vary strongly with phase hydration, between 10?7 and 10?6 cm2/s for monovalent and 10?8 and 10?7 for Ca2+. The activation energies obtained are relatively small (5–10 kcal/mol). As the phase water content increases, a series of diffusion sequences is obtained, corresponding to the sequences predicted by Eisenman's theory of alkali ion equilibrium selectivity.This diffusionnal selectivity, which depends exclusively upon non-equilibrium parameters (mobility) within the hydrophilic path is discussed in respect to current theories of pore selectivity.  相似文献   

13.
Summary 1. Both advective and diffusive processes are agents in the water exchange of the inner Oslo Fjord. The estuarine circulation is the most important form of water exchange. Analysis on a monthly basis has revealed great seasonal variations with peaks in spring and fall, and slack periods in winter and summer. The estuarine circulation is predominantly limited to the upper 20 m, comprising the zone of brackish water.2. To a lesser extent also the entire body of sea-water in the fjord is involved through vertical eddy diffusion. Seasonally varying density conditions in the outer fjord prevent a continuous replenishment of the deeper sea-water layers. This water is renewed intermittently, and to a varying extent, by heavier water flowing in over the sill. The process takes place about every winter and appears to be controlled by the strength and duration of the seasonal northerly winds.3. Vertical eddy diffusion coefficients are computed in the sea-water phase on the basis of the salt budget. In the upper layers the vertical diffusion is determined from harmonic analysis of the heat wave resulting from surface heating and cooling.4. Horizontal exchange in the upper layers also rises from diffusive processes. Tidal currents, however weak, are the main generating agent of turbulence, but also wind drift has significant effects when present. Horizontal eddy diffusion is determined from the budget of orthophosphate in winter. Diffusion coefficients are of the order 106 cm2/sec, but reach 107 cm2/sec in Drøbak Sound.5. Drastic forms of water exchange take place under influence of fresh winds prevailing for more than four days. Both pure wind drift and secondary density currents occur.
Horizontale und vertikale Austauschvorgänge und Diffusion in den Wasserkörpern des Oslofjords
Kurzfassung Der Wasseraustausch des inneren Oslofjords wird von einer Zirkulation innerhalb des Ästuars beherrscht. Die Advektion von Brackwasser erreicht Maxima im Frühjahr und Herbst, während sie im Winter und Sommer praktisch fehlt. In tieferen Schichten setzt die Zirkulation periodisch aus; hier ist ein Jahreszyklus feststellbar. Dieser Vorgang scheint in Beziehung zu den winterlichen Nordwinden zu stehen. Ein horizontaler Austausch erfolgt durch Gezeitenströme. Diese Form des Wasseraustausches ist vornehmlich während des Sommers von Bedeutung.
  相似文献   

14.
15.
Diffusion experiments performed using both a dissolved solution of trichloroethylene (TCE) and a pool of free phase TCE adjacent to a simulated soil-bentonite (SB) wall are described. These tests examine a multi-layer system that includes both contaminated sand and a SB barrier. Results obtained from experiments with dissolved TCE as the primary source are shown to be consistent with those obtained with free-phase TCE as the source of contaminant. Diffusion and sorption coefficients of a soil-bentonite slurry wall are reported to be 3.5 × 10?10 m 2 /s and 0 cm 3 /g, respectively. These diffusion and sorption coefficients were used to evaluate the effectiveness of a hypothetical SB slurry wall located adjacent to a TCE spill.  相似文献   

16.
The diffusion coefficients of four solutes ranging in molecular weight from 238 to 10,000 in the lateral intercellular spaces (LIS) of cultured kidney cells (MDCK) grown on permeable supports were determined from the spread of fluorescence produced after the release of caged compounds by a pulse from a UV laser. Two types of experiments were performed: measurement of the rate of change of fluorescence after releasing a caged fluorophore, and measurement of the change in fluorescence of a relatively static fluorescent dye produced by the diffusion of an uncaged ligand for the dye. Fluorescence intensity was determined by photon-counting the outputs of a multichannel photomultiplier tube. Diffusion coefficients were determined in free solution as well as in the LIS of MDCK cells grown on permeable supports and the hindrance factor, θ, determined from the ratio of the free solution diffusivity to that in the LIS. The hindrance factors for 3000-MW dextran, 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS, MW 524) and N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES, MW 238) were not significantly different from 1. The diffusion of 10,000-MW dextran was substantially reduced in the LIS with a θ of 5.6 ± 0.3. Enzymatic digestion by neuraminidase of the sialic acid residues of the glycosylation groups in the LIS increased the diffusivity of the 10,000-MW dextran 1.8-fold indicating hindrance by the glycocalyx. We conclude that small solutes, such as Na+ and Cl, would not be significantly restricted in their diffusion in the LIS and that solute concentration gradients could not develop along the LIS under physiologic conditions. Received: 7 October 1999  相似文献   

17.
Diffusion and movement of subcutaneously injected biologics and high-concentration immunoglobulin G (IgG) therapeutics away from the injection site and through the subcutaneous (SC) tissue may be concentration dependent. This possibility was confirmed by in situ measurement of diffusion coefficients of unlabeled bovine IgG in phosphate-buffered saline within an in vitro hyaluronic acid matrix that represents the SC electrostatic environment. Diffusion decreased from 2.67 to 0.05 × 10−7 cm2/s when IgG concentration increased from 25 to 73 mg/mL. The results demonstrated that in situ detection of unlabeled proteins within an in vitro SC environment provides another useful tool for the preclinical characterization of injectable biologics.  相似文献   

18.
Messenger ribonucleoprotein particles in developing sea urchin embryos   总被引:4,自引:0,他引:4  
Messenger RNA entering polysomes during early development of the sea urchin embryo consists of both oogenetic and newly transcribed sequences. Newly transcribed mRNA enters polysomes rapidly while oogenetic mRNA enters polysomes from a pool of stable, nontranslatable messenger ribonucleoprotein particles (mRNPs) derived from the unfertilized egg. Protein content may relate to differences in the regulation of newly transcribed and oogenetic mRNAs. Oogenetic poly(A)+ mRNA was found to be present in both polysomal and subpolysomal fractions of cleavage stage and early blastula stage embryos. This mRNA was found to be present in subpolysomal mRNPs with a density of 1.45 g/cm3 in Cs2SO4. Poly(A)+ mRNPs released from polysomes of embryos cultured in the presence of actinomycin D sedimented in a broad peak centered at 55 S and contained RNA of 21 S. The density of these particles was sensitive to the method of release; puromycin-released mRNPs had a density of 1.45 g/cm3, while EDTA caused a shift in density to 1.55 g/cm3, indicating a partial loss of protein. The results with newly synthesized mRNAs contrast sharply. Newly transcribed mRNA in subpolysomal mRNPs had a density of 1.55–1.66 g/cm3, a density approaching that of deproteinized RNA. Messenger RNA released from polysomes either by EDTA or puromycin was examined to determine the possible existence of polysomal mRNPs. When [3H]uridine-labeled mRNA was released from late cleavage stage embryo polysomes by either technique, and centrifuged on sucrose gradients, two broad peaks were found. One peak centered at 30 S contained 21 S mRNA while the other at 15 S contained 9 S histone mRNA. When these fractions were fixed with formaldehyde, they banded on Cs2SO4 gradients at a density of 1.60–1.66 g/cm3, very similar to that of pure RNA. We conclude that the newly transcribed mRNA may be present in stable mRNPs containing up to 10% protein in either subpolysomal or polysomal fractions. These mRNPs are clearly distinguishable from the protein-rich mRNPs containing oogenetic mRNAs.  相似文献   

19.
The possibility of achieving the high density of negative hydrogen ions \(N_{H^ - } \) in a low-voltage cesium-hydrogen discharge is investigated. The \(N_{H^ - } \) density is determined experimentally from the absorption of laser radiation due to the photodetachment of electrons from H? ions. The discharge plasma is investigated by the probe technique. The populations of the excited states of Cs atoms are determined from their emission intensities. With an input power of W≈(15–25) W/cm2 in the discharge, densities of \(N_{H^ - } \sim (10^{12} - 10^{13} )cm^{ - 3} \) are achieved. The self-consistent calculations of the plasma parameters in the discharge gap agree well with the experimental results. The absorption of laser radiation due to the photoionization of Cs atoms is investigated. It is shown that the role of this absorption mechanism is negligible.  相似文献   

20.
The structural properties, NMR and NQR parameters in the pristine and silicon carbide (SiC) doped boron phosphide nanotubes (BPNTs) were calculated using DFT methods (BLYP, B3LYP/6-31G*) in order to evaluate the influence of SiC-doped on the (4,4) armchair BPNTs. Nuclear magnetic resonance (NMR) parameters including isotropic (CSI) and anisotropic (CSA) chemical shielding parameters for the sites of various 13C, 29Si, 11B, and 31P atoms and quadrupole coupling constant (C Q ), and asymmetry parameter (η Q ) at the sites of various 11B nuclei were calculated in pristine and SiC- doped (4,4) armchair boron phosphide nanotubes models. The calculations indicated that doping of 11B and 31P atoms by C and Si atoms had a more significant influence on the calculated NMR and NQR parameters than did doping of the B and P atoms by Si and C atoms. In comparison with the pristine model, the SiC- doping in SiPCB model of the (4,4) armchair BPNTs reduces the energy gaps of the nanotubes and increases their electrical conductance. The NMR results showed that the B and P atoms which are directly bonded to the C atoms in the SiC-doped BPNTs have significant changes in the NMR parameters with respect to the B and P atoms which are directly bonded to the Si atoms in the SiC-doped BPNTs. The NQR results showed that in BPNTs, the B atoms at the edges of nanotubes play dominant roles in determining the electronic behaviors of BPNTs. Also, the NMR and NQR results detect that the Fig. 1b (SiPCB) model is a more reactive material than the pristine and the Fig. 1a (SiBCp) models of the (4,4) armchair BPNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号