首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Classical molecular dynamics simulation and ab initio mixed basis Car-Parrinello methods are discussed and applied to the investigation of the results of a recently performed STM-based experiment involving the adsorption of C60 molecules on the dimerized Si surface. We show that these methods are capable of providing the theoretical basis for this experiment and test the validity of the associated conjectures.

A mixed-basis all-electron formalism for the Car-Parrinello method is proposed to obtain the detailed understanding of the electronic states and dynamics of surface structure. A band structure calculation using this formalism is performed for the c(4 × 3) structure of C60 adsorbed on Si (100) surface and is compared with the experimental results.  相似文献   

2.
Abstract

The quasicrystal structure is considered to be a new type of ordered phase because its Fourier transform has Laue spots with icosahedral symmetry, which is inconsistent with crystal structure. Computer simulation of the formation process of a quasicrystal was performed by the molecular dynamics method. On the basis of the Strandburg type of quasicrystal model, we developed an algorithm of the formation process of binary quasicrystal reflecting the procedure as realistically as possible. The Fourier transform of some of the obtained structures has shown decagonal symmetry although the spots are rather diffused. It has been shown that the potential parameter and experimental condition should be limited to produce a perfect quasicrystal structure.  相似文献   

3.
A new potential model has been developed for the simulation of amorphous silica based on the ab initio potential model of Pyper. This model promises to be of value in the simulation of silica at high pressures.  相似文献   

4.
Abstract

Equilibrium NPT molecular dynamics computer simulations have been used to determine the chemical potential, partial enthalpy and partial volume of model Ar-Kr mixtures using newly devised non-intrusive particle insertion and particle swap techniques [P. Sindzingre et al. Chemical Physics, 129 (1989) 213]. In this report we examine, for the first time, in some detail the relative convergence statistics of the particle swap and particle insertion methods for these properties for binary Lennard-Jones (LJ) mixtures. Both species are represented by single-site Lennard-Jones pair potentials with Lorentz-Berthelot rules for the cross-species interactions. We show that, over the whole phase diagram and especially in the vicinity of the fluid-solid coexistence line, the particle swap method gives significantly better statistics than the particle insertion method for the difference in chemical potential of the two species, partial enthalpy and partial volume of each species. Also, we find that, using the particle swap method, the difference in the chemical potential converges more rapidly than the differences in the partial enthalpy and volume.  相似文献   

5.
In this paper, we propose a novel method to derive the interionic potentials for CaO and MgO in conjunction with ab initio calculation and empirical three-body interaction. By using the Chen–Mobius lattice inversion, the pairwise interaction between cations and anions can be evaluated from multiple virtual structures. The quantum-chemistry calculation is carried out to derive the short-range potential for the same species of ions. Empirical three-body interactions are then adopted to heal the drawbacks arising from purely pairwise potential, such as Cauchy relation. The proposed potential is verified by molecular dynamics simulations of some primary properties, including pressure and temperature dependence of lattice constant, elastic constants and phase transition of CaO and MgO. Simulation results are in good agreement with the existing experimental data and ab initio calculations, showing that the developed potentials are valid over a wide range of interionic separations. It is believed that this approach can be readily extended into other materials.  相似文献   

6.
Abstract

Molecular dynamics simulations are performed for aqueous solutions of polymers: Poly (vinyl alcohol) (PVA), Poly (vinyl methylether) (PVME), and Poly (N-isopropyl acrylamide) (PNiPAM). The distributions and dynamics of hydrogen-bonds, the translational diffusion of water, and the orientational relaxation of water are analyzed to investigate the properties of water which is highly influenced by the surrounding polymer chains. The water molecules around the polymer chains are highly hindered by the chains.  相似文献   

7.
Poly-proline-arginine (poly-PR) and poly-glycine-arginine (poly-GR) proteins are believed to be the most toxic dipeptide repeat (DPR) proteins that are expressed by the hexanucleotide repeat expansion mutation in C9ORF72, which are associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) diseases. Their structural information and mechanisms of toxicity remain incomplete, however. Using molecular dynamics simulation and all-atom model of proteins, we study folding and aggregation of both poly-PR and poly-GR. The results indicate formation of double-helix structure during the aggregation of poly-PR into dimers, whereas no stable aggregate is formed during the aggregation of poly-GR; the latter only folds into α-helix and double-helix structures that are similar to those formed in the folding of poly-glycine-alanine (poly-GA) protein. Our findings are consistent with the experimental data indicating that poly-PR and poly-GR are less likely to aggregate because of the hydrophilic arginine residues within their structures. Such characteristics could, however, in some respect facilitate migration of the DPR proteins between and within cells and, at the same time, give proline residues the benefits of activating the receptors that regulate ionotropic effect in neurons, resulting in death or malfunction of neurons because of the abnormal increase or decrease of the ion transmission. This may explain the neurotoxicities of poly-PR and poly-GR associated with many neurodegenerative diseases. To our knowledge, this is the first molecular dynamics simulation of the phenomena involving poly-PR and poly-GR proteins.  相似文献   

8.
9.
Molecular Dynamics (MD) simulations have been used to understand how protein structure, dynamics, and flexibility are affected by adaptation to high temperature for several years. We report here the results of the high temperature MD simulations of Bacillus stearothermophilus L1 (L1 lipase). We found that the N-terminal moiety of the enzyme showed a high flexibility and dynamics during high temperature simulations which preceded and followed by clear structural changes in two specific regions; the small domain and the main catalytic domain or core domain of the enzyme. These two domains interact with each other through a Zn2+-binding coordination with Asp-61 and Asp-238 from the core domain and His-81 and His-87 from the small domain. Interestingly, the His-81 and His-87 were among the highly fluctuated and mobile residues at high temperatures. The results appear to suggest that tight interactions of Zn2+-binding coordination with specified residues became weak at high temperature which suggests the contribution of this region to the thermostability of the enzyme. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Atomistic simulation methods such as molecular dynamics require an efficient calculation of interatomic forces and stresses from pre–defined interatomic potentials. Both analytical and numerical approaches can be used to do this. Analytical approach directly calculates forces and stresses using analytical formulae, and can therefore yield accurate results. However, the force and stress expressions may become extremely complicated as the complexity level of the potential increases, resulting in a prolonged development cycle to implement new potentials. Numerical approach uses finite difference method to evaluate forces and stresses through simple calculation of energies at selected perturbations of crystal configurations. The method can be quickly implemented and tested for any potentials. However, it may result in significant numerical errors. We have compared analytical and numerical calculations of interatomic forces and stresses in molecular dynamics, and identified the conditions where numerical method can be successfully used without significant errors.  相似文献   

11.
Abstract

In molecular dynamics simulations the temperature or pressure can be controlled by applying a weak first-order coupling to a bath of constant temperature or pressure. This weak coupling technique to control system properties using a first-order relaxation equation is analyzed from a statistical mechanics point of view. It is shown, how the weak coupling scheme can be generalized and applied to a bath of contstant chemical potential. The presented method, to which in the following will be referred to as chemical potential weak coupling, is applied and tested on a Lennard-Jones fluid. The thermodynamic quantities known from the literature are accuratly reproduced.

The temperature and chemical potential weak coupling methods aim to sample the canonical and grand canonical ensembles respectively. By analyzing the fluctuations in energy and number of particles, the tight relation between the ensembles and the distributions obtained from the weak coupling simulations is demonstrated. The influence of the choice of the coupling parameters on the quality of the approximation of the ensemble distribution is discussed.  相似文献   

12.
Abstract

A two step strategy is proposed to study dynamical properties of a physical system much slower than the time scales accessible by molecular dynamics simulations. The strategy is applied to investigate the slow dynamics of supercooled liquids.  相似文献   

13.
Abstract

We present results of a computer simulation study of fluid nitrogen in model slit micropores. The model used for the micropore allows for the permeability of the pore wall to the confined fluid to be precisely controlled, while maintaining the atomic nature of the wall. Density and orientation profiles, wall permeabilities and diffusion coefficients have been obtained for systems with pore walls ranging from the almost impermeable to the completely permeable. Both the density and orientation profiles exhibit nonuniform behavior, while we observe anisotropy in the diffusion coefficients.  相似文献   

14.
Abstract

Two potential parameter sets for alkali silicates were derived on the basis of ab-initio MO calculations. One is a model containing completely ionic alkali (model I), and another is that derived from cluster calculations (model II). These sets were tested against the crystal, glass, and liquid of metasilicates. The model II can reproduce these structures well under constant pressure conditions, and is found to be better than model I as a whole.  相似文献   

15.
Abstract

Point mutations in the human prion protein gene, leading to amino acid substitutions in the human prion protein contribute to conversion of PrPC to PrPSc and amyloid formation, resulting in prion diseases such as familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Straussler-Scheinker disease (GSS), and fatal familial insomnia. We have investigated impressions of prevalent mutations including Q217R, D202N, F198S, on the human prion protein and compared the mutant models with wild types. Structural analyses of models were performed with molecular modeling and molecular dynamics simulation methods. According to our results, frequently occurred mutations are observed in conserved and fully conserved sequences of human prion protein and the most fluctuation values occur in the Helix 1 around residues 144–152 and C-terminal end of the Helix 2. Our analysis of results obtained from MD simulation clearly shows that this long-range effect plays an important role in the conformational fluctuations in mutant structures of human prion protein. Results obtained from molecular modeling such as creation or elimination of some hydrogen bonds, increase or decrease of the accessible surface area and molecular surface, loss or accumulation of negative or positive charges on specific positions, and altering the polarity and pKa values, show that amino acid point mutations, though not urgently change the stability of PrP, might have some local impacts on the protein interactions which are required for oligomerization into fibrillar species.  相似文献   

16.
17.
18.
Abstract

We present a comparative study, using molecular dynamics, of systems of diatomic, hard dumb-bell, molecules in which the interatomic distance is either constrained to a fixed value or is allowed to vary freely between preset limits. A significant improvement in simulation effciency can be attained by allowing the bond length to vary. We find that thermodynamic properties, and some time correlation functions, are only slightly affected by the removal of the rigid bond-length constraint. The atomic velocity correlation function responds dramatically at short times to changes in the degree of non-rigidity, but at long times these differences are much less important.  相似文献   

19.
Abstract

We present a parallel algorithm for molecular dynamics involving short-range two- and three-body potentials and the pair-correlation function, g(r). The method is based on a spatial decomposition of the simulation box that takes advantage of a linked-cell list, and allows a load balanced partition of the computations of both the forces and g(r) over the processors. The tests of the program is conducted by evaluating the efficiency for both the thermalization phase and the production phase of the simulation. This method is successfully applied to the calculation of the direct correlation function of fluid krypton at small scattering angle along the T = 297 K supercritical isotherm.  相似文献   

20.
Abstract

We studied a pair of homologous thermophilic and mesophilic ribonuclease HI enzymes by molecular dynamics simulations. Each protein was subjected to three 5 ns simulations in explicit water at both 310 K and 340 K. The thermophilic enzyme showed larger overall positional fluctuations at both temperatures, while only the mesophilic enzyme at the higher temperature showed significant instability. When the temperature is changed, the relative flexibility of different local segments on the two proteins changed differently. Principal component analysis showed that the simulations of the two proteins explored largely overlapping regions in the conformational space. However, at 340 K, the collective structure variations of the thermophilic protein are different from those of the mesophilic protein. Our results, although not in accordance with the view that hyperthermostability of proteins may originate from their conformational rigidity, are consistent with several recent experimental and simulation studies which showed that thermophilic proteins may be conformationally more flexible than their mesophilic counterparts. The decorrelation between conformational rigidity and hyperthermostability may be attributed to the temperature dependence and long range nature of electrostatic interactions that play more important roles in the structural stability of thermophilic proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号