首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthropogenic modifications to waterways are common and their ecological consequences must be understood to effectively conserve local biodiversity. The facilitation of recreational boating activities often requires substantial alteration of natural areas, however the environmental and ecological consequences of such alterations are rarely described in the scientific literature. In this study, ecological and physico-chemical conditions were investigated in a recreational boating marina, located inside a marine park on the south-east coast of Australia. Recruitment panels were deployed for 8?weeks both inside and outside the marina, and differences in the composition of the developing fouling communities were observed. The recruitment of taxa, which often have short-lived larvae, was increased inside the marina (bryozoans, spirorbids and sponges) while the recruitment of taxa, which often have longer-lived larvae, was reduced or absent (barnacles, solitary ascidians and non-spirorbid polychaetes). Differences were also observed in environmental conditions inside the marina cf. directly outside. The marina environment had higher turbidity, temperature and pH along with higher concentrations of lead and copper in suspended sediments, while flow rates and trapped sediment loads were reduced inside the marina. The differences observed in the study suggest that there may be marked environmental changes associated with marina developments. The potential ecological consequences of these changes should be a primary consideration during the planning process, particularly for developments in locations of notable ecological value.  相似文献   

2.
Over the past 30 years southern New England, USA has been invaded by several species of ascidians, including Botrylloides violaceus, Diplosoma listerianum, Styela clava, and Ascidiella aspersa. These species have become dominate in coastal embayments and marinas but are usually absent from more open water coastal areas. A colonial ascidian, Didemnum sp. has invaded southern New England during the past 10 years and we first observed this species in eastern Long Island Sound in 2000. It has become the dominant at several field sites while remaining in low abundance at others. We conducted an experiment at two places, a protected marina and an open coast site, to examine its ability to compete with the established fouling community. Small colonies of Didemnum were transplanted onto panels with communities that varied in age from one to four weeks old and these treatments along with controls with only Didemnum were exposed at both sites. In most treatments Didemnum became a dominant species in the communities at both sites but it reached higher abundances at the open coast site. Potential causes of the observed differences are predation on other species of ascidians at the open coast site reducing recruitment of these species and competition, lower tolerance for elevated temperatures at the marina site, or other environmental parameters that might affect growth rates.  相似文献   

3.
The addition of artificial structures along urbanised shorelines is a global phenomenon. Such modifications of habitats have important consequences to the abundance of fouling organisms on primary substrata, but the influence on fouling of habitat-formers living on these structures is poorly understood. Fouling of habitat-forming kelps Ecklonia radiata on pier-pilings was compared to that on rocky reefs at three locations in Sydney Harbour. Kelps on pilings supported different assemblages of bryozoans from those on reefs. The abundances of bryozoans on kelps, inparticular of the non-indigenous species Membranipora membranacea, were significantly greater on pilings. Differences were consistent in time and space. This indicates that the addition of artificial structures also affects fouling on secondary biogenic substrata, altering biodiversity and potentially facilitating the introduction and dispersal of non-indigenous epibiota. Understanding the processes that cause these patterns is necessary to allow sensible predictions about ecological effects of built structures.  相似文献   

4.
Marzinelli EM 《Biofouling》2012,28(3):339-349
The addition of artificial structures along urbanised shorelines is a global phenomenon. Such modifications of habitats have important consequences to the abundance of fouling organisms on primary substrata, but the influence on fouling of habitat-formers living on these structures is poorly understood. Fouling of habitat-forming kelps Ecklonia radiata on pier-pilings was compared to that on rocky reefs at three locations in Sydney Harbour. Kelps on pilings supported different assemblages of bryozoans from those on reefs. The abundances of bryozoans on kelps, in particular of the non-indigenous species Membranipora membranacea, were significantly greater on pilings. Differences were consistent in time and space. This indicates that the addition of artificial structures also affects fouling on secondary biogenic substrata, altering biodiversity and potentially facilitating the introduction and dispersal of non-indigenous epibiota. Understanding the processes that cause these patterns is necessary to allow sensible predictions about ecological effects of built structures.  相似文献   

5.
Measures taken to control the spread of non-indigenous species by human vectors may act selectively by providing effective protection against some (but not all) species. Toxic antifouling paints are used by boat owners to prevent the development of fouling assemblages on the hulls of their boats, which reduce vessel speed and maneuverability. By reducing fouling, these paints also prevent transport of non-indigenous species. Using experimental surfaces mimicking boat hulls, we evaluated the effectiveness and selectivity of (1) antifouling paints, and (2) manual, in-water hull cleaning for preventing the transport of marine sessile invertebrates by recreational vessels. Different types of antifouling paints provided effective protection only against barnacles and bivalves. Other fouling taxa occurred on experimental surfaces after a period of only 2 months. Manual hull cleaning did not remove fouling completely, and even enhanced the risk of subsequent recruitment by some fouling organisms. Up to six times more individuals and colonies recruited to boat surfaces from which the existing fouling organisms had been removed manually than to surfaces that had been sterilized or contained intact fouling assemblages. Bivalves, colonial and solitary ascidians, encrusting bryozoans, hydroids, tubiculous polychaetes, and sponges consistently recruited in greatest abundance to manually cleaned surfaces. Individual taxa responded in complex, but predictable ways to the biogenic cues left by manual cleaning, so that different suites of organisms colonized surfaces that had originally contained fouling assemblages of local or non-local origin. Our study shows that widely adopted measures to control the spread of non-indigenous species by human vectors are often highly selective and, while effective for some taxa, do not prevent the transport of others.  相似文献   

6.
Abstract Hull fouling is a major cost for owners of small vessels and an important pathway for the spread of non‐indigenous aquatic species. The extent of fouling depends on a hull's susceptibility to recruitment by aquatic organisms and the local availability of competent planktonic propagules (‘propagule pressure’). Management strategies have typically been concerned with increasing resistance of the hull to recruitment through the use of toxic paints. Here we tested the hypothesis that fouling is influenced by the design of the harbour in which the boat is moored. We compared recruitment of sessile invertebrates to available surfaces in two types of recreational boat harbours: marinas that were partially enclosed by a permanent breakwall, and marinas that lacked breakwalls. Recruitment in the marinas was compared to coastal reference sites that were not used for mooring. At each location, recruitment tiles were deployed for 4 weeks on four separate occasions over a period of 2 years. Measurements of current velocities and spatial patterns of water flow at each location showed that permanent breakwalls created complex patterns of circulation that retained water within the marina basin for up to 12 h d?1. Despite large regional and temporal variability in fouling over time, most organisms recruited in greatest numbers to surfaces in partially enclosed marinas, and were often several orders of magnitude more abundant in the enclosed marinas than in unenclosed marinas or coastal reference locations. Harbour design has an important influence on the rate at which fouling organisms recruit to available surfaces within marinas. Entrainment of water in enclosed marinas may limit the dispersal of planktonic propagules by advective currents but effectively increases propagule pressure to available surfaces, including resident boat hulls. This is likely to accelerate the development of hull‐fouling assemblages and increase the chances of transport of non‐indigenous species that establish populations in the harbour basin.  相似文献   

7.
The present study investigated aspects of the antifoulant properties of three sympatric species of ascidians found in seagrass habitats of the Gulf of Mexico, Southern Atlantic Ocean, and Caribbean. Field observations in Saint Joseph Bay, Florida indicate that all three species are common and that the tunic of the solitary ascidian Molgula occidentalis is often heavily fouled, while the outer surfaces of both the colonial ascidians Amaroucium stellatum and Botryllus planus are free of fouling organisms. Antifoulant activities of a suite of increasing hydrophilic organic extracts prepared from the tunic of M. occidentalis and whole colonies of A. stellatum and B. planus were measured using both sympatric microbial (bacteria) and macroinvertebrate (cyprid larvae of Balanus amphitrite) fouling organisms in laboratory bioassays. In addition, field antifoulant assays were conducted by combining organic extracts with controlled-release resin and subsequently coating this material on to acrylic rods deployed in the field for a 72 h period. Extracts of the tunic of M. occidentalis generally did not inhibit bacterial growth. The exception was the methanol extract, which inhibited growth in one of the six marine bacteria tested. Moreover, only the highest concentrations of hexane and methanol tunic extracts tested prevented attachment of cyprid larvae. Field assays revealed no antifoulant activity on rods coated with resin containing extracts of M. occidentalis. Inhibition of both microbial growth and cyprid settlement were much more pronounced in whole-organism extracts of the two colonial ascidians. Most potent were the aqueous methanol extracts of colonies of B. planus and A. stellatum which inhibited growth in five of the six marine bacteria tested. In addition, hydrophilic and lipophilic extracts of the colonial ascidians significantly inhibited attachment of cyprid larvae, in many instances across a wide range of extract concentrations. Field antifoulant assays indicated that extracts of both colonial ascidians inhibited settlement of bryozoans and barnacles. The findings indicate that the colonial ascidians B. planus and A. stellatum possess chemical antifoulant properties. In contrast, the solitary ascidian M. occidentalis appears to either tolerate fouling or possess other non-chemical mechanisms to cope with the risks associated with epibiont overgrowth.  相似文献   

8.
Drop stones with lithophyllic macrofauna from Belgica Bank, Greenland Sea (79–81°N and 5–17°W) were collected during the Polarstern cruise in August 2000. The investigation focussed on species richness, diversity, abundance, and interactions of organisms colonizing rocks. On 101 stones collected by 10 dredges from nine sites, 113 taxa (58 genera, 38 families, 12 orders and 8 phyla) were recognized. Among the most abundant groups of organisms were foraminiferans, bryozoans and polychaetes, while the least abundant were anthozoans and ascidians. Abundance ranged from 1239 to 11,383 individuals m−2 of rock surface area. Bryozoans were the most species-rich group, while anthozoans and ascidians were represented by the least number of species. Colonization occurred at various topographical levels and was classified into two categories. Stones were classified as primary space and were colonized by erect membranous, erect flexible, erect rigid, and flat encrusting organisms. The second level of colonization by epibionts occurred on erect forms of organisms (e.g. erect bryozoans) and was classified as a secondary space. Species composition and abundance between faunal assemblages of primary and secondary space differed greatly. Colonization occurred only on the top of stones and was considered a special adaptation to avoid burial by sedimentation and to enhance food supply. Only 3% of recruits were involved in any competitive interactions. Competition was considered to be of minor importance in structuring lithophyllic assemblages.  相似文献   

9.
Anderson MJ  Millar RB  Blom WM  Diebel CE 《Oecologia》2005,146(2):279-286
von Bertalanffy curves were used to describe the nonlinear relationship between assemblages inhabiting holdfasts of the kelp Ecklonia radiata and the volume of the holdfast. This was done using nonlinear canonical analyses of principal coordinates (NCAP). The volume of the holdfast is a proxy for the age of the plant and, thus, the canonical axis is a proxy for succession in the marine invertebrate community inhabiting the holdfast. Analyses were done at several different taxonomic resolutions on the basis of various dissimilarity measures. Assemblages in relatively large holdfasts demonstrated ongoing variation in community structure with increasing volume when the dissimilarity used was independent of sample size. Smaller holdfasts had proportionately greater abundances of ophiuroids and encrusting organisms (bryozoans, sponges, ascidians), while larger holdfasts were characterised by proportionately greater abundances of crustaceans, polychaetes and molluscs. Such linear and nonlinear multivariate models may be applied to analyse system-level responses to the growth of many habitat-forming organisms, such as sponges, coral reefs, coralline algal turf or forest canopies.  相似文献   

10.
Augmentative biocontrol, defined as the use of indigenous natural enemies to control pest populations, has not been explored extensively in marine systems. This study tested the potential of the anemone Anthothoe albocincta as a biocontrol agent for biofouling on submerged artificial structures. Biofouling biomass was negatively related to anemone cover. Treatments with high anemone cover (>35%) led to significant changes in biofouling assemblages compared to controls. Taxa that contributed to these changes differed among sites, but included reductions in cover of problematic fouling organisms, such as solitary ascidians and bryozoans. In laboratory trials, A. albocincta substantially prevented the settlement of larvae of the bryozoan Bugula neritina when exposed to three levels of larval dose, suggesting predation as an important biocontrol mechanism, in addition to space pre-emption. This study demonstrated that augmentative biocontrol using anemones has the potential to reduce biofouling on marine artificial structures, although considerable further work is required to refine this tool before its application.  相似文献   

11.
Epibenthic patches dominated by barnacles Balanus crenatus Bruguiere and solitary ascidians Styela spp., Bolthenia echinata (L.) and Molgula spp. in the White Sea shallow subtidal develop on bivalve shells and small stones surrounded with muddy sand. The space between barnacles and ascidians is filled with muddy sediment inhabited by motile taxa. We hypothesized that (i) epibenthic patches and unstructured sediment would attract different motile fauna and (ii) motile fauna of the patches would be affected by local abundances of epibenthic foundation species. Most dominant motile species demonstrated a significant difference in abundance between the two microhabitats. In contrast to the fauna of the sediment, species composition observed in aggregations of barnacles and ascidians was stable across different locations. In the field experiment initially clear bivalve shells after 5 years of exposure developed barnacle clusters with motile fauna similar to that observed in natural aggregations. Amphipods, isopods and bivalves, capitellid polychaets, Cirratulus cirratus (Müller) and Pholoe minuta Fabricius (Polychaeta) dominated in the sediment inside epibenthic patches. The proportion of capitellids, known to be sensitive to organic enrichment, was much higher within the patches than outside. The abundances of motile taxa found in aggregations were mostly determined by the number of barnacles of different size and of their empty shells, the biomass of ascidians, and the effect of location. Different dominant species demonstrated sensitivity to different parameters.Physical structure of the habitat, provided by barnacles and ascidians, as well as their biodeposition activity are regarded as the main factors structuring the motile fauna in the community studied. The spatial pattern observed seems to imply a range of pattern-generating biogenic processes, similar to those previously revealed in patches of filter-feeding bivalves, tube-building worms and seagrass.  相似文献   

12.
Fouling-resistant surfaces of tropical sea stars   总被引:1,自引:0,他引:1  
Qualitative evidence suggests sea stars are free of fouling organisms; however the presence of fouling-resistant surfaces of sea stars has not previously been documented. Field surveys were conducted in northern Queensland, Australia, during the wet and dry seasons and several tropical sea star species were examined for surface-associated micro- and macro-organisms. Mean bacterial abundances on seven sea star species were approximately 10(4) to 10(5) cells cm(-2) during both seasons. There were no consistent trends in bacterial abundances with season, species and aboral positions on sea star arms. No common generalist fouling organisms, such as algae, barnacles, serpulid polychaetes, bryozoans and ascidians, were found on any specimens of 12 sea star species. However, low numbers of parasitic and commensal macro-organisms were found on six sea star species. The gastropods Parvioris fulvescens, Asterolamia hians, Thyca (Granulithyca) nardoafrianti and Thyca crystallina were found exclusively on the sea stars Archaster typicus, Astropecten indicus, Nardoa pauciforis and Linckia laevigata, respectively. The shrimp Periclimenes soror was only found on Acanthaster planci, and the polychaete Ophiodromus sp. on A. typicus. The copepods Stellicola illgi and Paramolgus sp. were only found on L. laevigata and Echinaster luzonicus, respectively. As no common generalist fouling organisms were discovered, sea stars offer an excellent model to investigate the mechanisms driving fouling-resistant surfaces and the selective settlement of specialist invertebrates.  相似文献   

13.
The succession of fouling organisms that settled on asbestos plates immersed at Garden Island. Western Australia, was partially caused by the settlement patterns of the species involved. Both temporal variations in the abundance and continuity of settlement of each species and the age of the communities in which each species settled abundantly contributed to producing the succession. Additionally, temporal variations in the settlement of each species probably resulted in variability in the pattern of succession.Balanus and Spirorbis, the two earliest species in the succession, settled continuously and abundantly so that they immediately occupied a substantial area. The species which predominated later in the succession, Anomia, Ostrea, encrusting bryozoans, and Mytilus, settled discontinuously so that they were unlikely to settle immediately on a newly immersed surface. Additionally, Anomia, Ostrea, and the encrusting bryozoans did not settle abundantly and did not occupy a substantial area while small. Thus, there was also a delay between the time when these species settled and the time when they had grown sufficiently large to occupy a substantial area.Mytilus was the only species that settled abundantly in established communities and thus could persist indefinitely in a community. Settlement of the other species which occurred earlier in the succession was largely restricted to newly immersed plates and consequently these species were limited in their duration in the succession by the life-spans of the individual organisms.  相似文献   

14.
The use of vibration is proposed as a means of controlling the settlement of marine fouling organisms. In this study, panels with embedded lead zirconate titanate, known as PZT, were placed in the field over 3?months. The panels were vibrated at different velocity levels at frequencies between 70 and 445?Hz. It was found that barnacles (Amphibalanus variegatus Darwin and Elminius sp.) were the only fouling organisms affected by the applied vibration, and these organisms settled in significantly lower numbers when the plates were excited at specific frequencies and amplitudes. Panels vibrating at relatively higher frequencies, greater than 260?Hz, exhibited reduced barnacle settlement, whilst lower frequencies in the 70–100?Hz range had little or no effect. The settlement of other fouling organisms such as tubeworms, bryozoans, ascidians and algae did not appear to be affected by the applied excitation. The experimental results showed that increasing the velocity amplitude of vibration was a contributing factor in inhibiting barnacle settlement.  相似文献   

15.
Coastal human‐made structures, such as marinas and harbors, are expanding worldwide. Species assemblages described from these artificial habitats are novel relative to natural reefs, particularly in terms of the abundance of nonindigenous species (NIS). Although these fouling assemblages are clearly distinctive, the ecosystem functioning and species interactions taking place there are little understood. For instance, large predators may influence the fouling community development either directly (feeding on sessile fauna) or indirectly (feeding on small predators associated with these assemblages). In addition, by providing refuges, habitat complexity may modify the outcome of species interactions and the extent of biotic resistance (e.g., by increasing the abundance of niche‐specific competitors and predators of NIS). Using experimental settlement panels deployed in the field for 2.5 months, we tested the influence of predation (i.e., caging experiment), artificial structural complexity (i.e., mimics of turf‐forming species), and their interactions (i.e., refuge effects) on the development of sessile and mobile fauna in two marinas. In addition, we tested the role of biotic complexity—arising from the habitat‐forming species that grew on the panels during the trial—on the richness and abundance of mobile fauna. The effect of predation and artificial habitat complexity was negligible, regardless of assemblage status (i.e., native, cryptogenic, and nonindigenous). Conversely, habitat‐forming species and associated epibionts, responsible for biotic complexity, had a significant effect on mobile invertebrates (richness, abundance, and community structure). In particular, the richness and abundance of mobile NIS were positively affected by biotic complexity, with site‐dependent relationships. Altogether, our results indicate that biotic complexity prevails over artificial habitat complexity in determining the distribution of mobile species under low predation pressure. Facilitation of native and non‐native species thus seems to act upon diversity and community development: This process deserves further consideration in models of biotic resistance to invasion in urban marine habitats.  相似文献   

16.
Considering the diversity and abundance of larger foraminifera examined from a wide range of Late Oligocene to Early Miocene palaeoenvironments in the Tethyan Seaway, encrusting bryozoans make extremely little use of their tests as substratum. Significant encrustations by bryozoans were exclusively found on large (ø c. 6 cm), undulating tests of Lepidocyclina spp., on which, however, a remarkable 34 taxa of encrusting bryozoans were recorded. This shallow-water fauna of Chattian age was analyzed in respect of the bryozoan taxa present, colony growth type, and mode of budding, colony size, as well as onset of reproduction. Taxic and morphological similarities between the fossil assemblage and modern faunas encrusting mobile substrata indicate a long history of bryozoans as part of the interstitial habitat, while the tests of certain larger foraminifera may have played a significant role in the evolution of shallow-water bryozoans by providing substrata for encrusting species in otherwise unfavorable environments.  相似文献   

17.
Bryozoans are colonial invertebrates that often dominate epibenthic assemblages on the lower surfaces of hard substrata. Competition among neighbouring organisms is usually a critical process regulating biodiversity, and hard substrata have proved to be a suitable model habitat to analyse spatial interactions. We explored the relationships among abundance, species richness, diversity, competitive ability, coverage, available surface, depth and substratum size in an assemblage of bryozoans encrusting pebbles and cobbles in a bank off the eastern mouth of the Strait of Magellan. We also tested whether overgrowth competition can be regarded as hierarchical, and whether the species abundance distribution shows a mode of rare species and a decreasing frequency of increasingly abundant species. Abundance, species richness, diversity and overgrowth competition were highest on the largest substrata. Smaller pebbles tended to be encrusted by the commonest bryozoans, while the rarest species were mainly found on relatively larger clasts. A high proportion of the lower surfaces of most substrata was available for growth. Diversity values of relatively shallow stations were lower than expected under Caswell’s neutral model. Interspecific competition was hierarchical, but the abundance of colonies was not related to the competitive ability of each species. The species abundance distribution was bimodal, with a main mode of rare species and a second one partly composed of relatively abundant bryozoans with poor competitive abilities. This study shows that even in an encrusting assemblage where competition is hierarchical, the weakest competitors persist and the dominant species are far from being capable of monopolizing space.  相似文献   

18.
Biofouling on ships has been linked to the spread of invasive species, which has been identified as one of the current primary threats to the environment. Previous research on antifouling coatings suggested that the quantity of fouling, as well as community composition, on biocidal coatings was modified by prior fouling settlement. The experiment reported in this paper was designed to determine how preconditioning affected the rate and composition of subsequent fouling on transplanted silicone coatings. A series of 10 × 20?cm panels coated with Intersleek 700 or DC3140 were placed at three locations in Florida (Ponce Inlet, Sebastian Inlet, and Port of Miami), which were characterized by distinct fouling communities. Panels were immersed for four months, cleaned, and reciprocally transplanted among the three sites. Fouling community composition and coverage were characterized at bimonthly intervals both before and after transplantation. The original fouling community affected the subsequent fouling composition and recolonization by tunicates, sea anemones, barnacles, sponges, hydroids, and arborescent bryozoans. The community-level effects were short-term, lasting 2–4?months, but specific responses lasted up to 14?months post-transplant.  相似文献   

19.
In this study, patterns of community development were investigated within vs. outside 'habitats'. These habitats represented five different monospecific assemblages of one of the following species: the brown alga Fucus serratus, the red alga Delesseria sanguinea, the green alga Enteromorpha intestinalis, the seagrass Zostera marina and the blue mussel Mytilus edulis. Natural assemblages were allowed to develop on paired artificial substrata-separated by ca. 1 m-within (treatment) vs. outside (control) of habitats. The same colonizer species settled on treatment and control substrata for given habitats. However, after 5 months of settlement and post-settlement dynamics, their proportional abundance and the structure of treatment and control assemblages differed in many instances. Variability among replicates of a given treatment, seperated by up to 50 m, was large, indicating a patchy spatial distribution of organisms. Despite this spatial heterogeneity among within-treatment replicates, analysis of similarity revealed that in most instances significantly different assemblages developed between treatments on a small spatial scale depending on whether substrata were positioned within as compared to outside a given habitat.Consequently, the algae, seagrass or mussels constituting a habitat seem to control the structure of the benthic assemblage developing in their vicinity by one or more possible mechanisms: reduction of larval advection, exudation of metabolites that influence settlement and/or post-settlement survival, and/or-in the case of mussel assemblages-predation on larvae.In addition to spatial variability in larval supply, stochasticity in succession, substratum heterogeneity, competition and predation effects, this investigation reveals the potential of a further assemblage structuring factor: the impact of neighboring organisms.  相似文献   

20.
In many environments recruitment of dispersive propagules (e.g. seeds, spores and larvae) can vary from situations when particular taxa recruit in relative isolation to times when they recruit simultaneously with other, functionally quite different taxa. Differences in the identity and density of recruiting taxa can have important consequences on community structure, but it is still not clear how the effects of individual taxa on communities are modified when they recruit together with other species. Using an experimental approach we compared early development of a temperate marine sessile community after the recruitment of mixtures of botryllid ascidians and barnacles to that when barnacles or botryllid ascidians recruited alone. Communities exposed to recruitment of botryllid ascidians in isolation differed from those that received barnacles, a mixture of botryllids and barnacles or no recruitment in 2-week-old communities. These early differences were driven by higher abundances of the species that were present as initial recruits in experimental treatments. After 2 months communities also differed between barnacle and mixed recruitment treatments but not mixed and botryllid or botryllid and barnacle treatments. These differences were not directly due to differences in the abundances of our manipulated taxa but occurred because of two abundant arborescent bryozoans, Bugula dentata, which occupied more space in communities that initially received mixed recruitment than in those that received barnacle or no recruitment, and Zoobotryon verticillatum, which occupied more space in communities that initially received only barnacle recruitment than those that initially received botryllid or mixed recruitment. These effects did not persist, and communities did not differ after 6 months. These results suggest that, more generally, species may influence community dynamics differently when they recruit alongside other species than when they recruit in relative isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号