首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lau SC  Harder T  Qian PY 《Biofouling》2003,19(3):197-204
Larval settlement in the marine polychaete Hydroides elegans is effectively mediated upon contact with the surface of marine bacterial films. Using the bacterium Roseobacter litoralis as a model strain, the effect of bacterial extracellular polymers (exopolymers) on larval settlement of H. elegans was investigated. Bioassays with exopolymer fractions dissociated from bacterial films evoked the initial stages of the larval settlement process, i.e. larvae slowed down, secreted a mucous thread and crawled over the surface. This response is typical of larvae that encounter an attractive bacterial film. In contrast, bioassays with exopolymers in association with UV-irradiated, metabolically inactive bacterial films evoked complete settlement. However, the percentage of responding larvae was negatively correlated with the magnitude of UV-dosage. Since UV energy crosslinks both intra- and extracellular proteinaceous components, it could not be distinguished whether the decrease in larval settlement was due to a modification of proteinaceous components of exopolymers or due the elimination of cellular activity. Nevertheless, the results ascribe bacterial exopolymers the role of an indicator of substratum suitability and provide evidence that the polysaccharide moiety of exopolymers does not complement this effect.  相似文献   

2.
It has been suggested that bacteria associated with soft-bodied organisms are suggested to produce bioactive compounds against the attachment of invertebrate larvae and bacteria onto the surface of these organisms. Our recent study has demonstrated that epibiotic bacteria from the surface of the soft coral Dendronephthya sp. (Coelenterata: Octocoralia, Alcyonacea) inhibit the growth of bacteria commonly found in marine natural biofilms. In the present study, the effect of 11 epibiotic bacteria isolated from the surface of Dendronephthya sp. on larval settlement of the tubeworms Hydroides elegans was examined using laboratory bioassay. Among 11 bacterial isolates, 2 strains (18%) inhibited the larval settlement of H. elegans (Haswell), 4 strains (36%) were “inductive” to larvae and the remaining 5 strains (46%) were “non-inductive”. There was no correlation between the antifouling activities of bacterial isolates and their phylogenetic origin, i.e. closely related bacterial strains showed different effects on larval settlement of H. elegans. When all “inductive”, “non-inductive” and “inhibitive” bacterial isolates were mixed in a 1:1:1 ratio, the effect of the resultant multispecies film on larval settlement became “inhibitive”. Waterborne compounds of Vibrio sp. and an unidentified α-Proteobacterium, which suppressed the settlement of H. elegans and Bugula neritina (L.) larvae, were further investigated using size fractionation and bioassay-guided enzymatic analysis. It was found that antilarval settlement compounds from these bacteria were heat-stable polysaccharides with a molecular weight >100 kDa. The results indicate that the bacteria associated with the soft coral Dendronephthya sp. may contribute to the antifouling mechanisms of the soft-bodied organisms by producing compounds that are against bacterial growth and settlement of macrofoulers on the surface of their host.  相似文献   

3.
Various aspects of marine macroinvertebrate ecology cannot be understood without detailed knowledge of larval settlement processes. An important effect underscored during the settlement process is the disturbance of marine invertebrate larvae by predators. We demonstrated that biotic disturbance, comprising physical elimination and mortality due to predation and the behavioral irritation of larvae by the harpacticoid copepod Tisbe japonica, prevent a significant portion of larvae of the polychaete Hydroides elegans from settlement on otherwise suitable substrata. Experiments were performed both in the laboratory and the field showing reproducible significant differences in larval settlement and mortality rates between gender-specific copepod treatments and the control. The trend of decreased larval settlement in the presence of copepods coincided with increased larval mortality in these treatments. In the corresponding field experiments, larval settlement and mortality were similar to the ones obtained under laboratory conditions.  相似文献   

4.

This study examined the inhibitory effect of 3 phenolic compounds and 12 strains of marine bacteria on the larval settlement of Balanus amphitrite amphitrite. The phenolic compounds used were phlorotannins, phloroglucinol and tannic acid. Phlorotannins are polymers of phloroglucinol (1,3,5‐trihydroxybenzene) known only from brown algae. Tannic acid, which exists in terrestrial plants, is composed of oligomers of phloroglucinol attached to a sugar molecule. The bacterial strains used were isolated from a natural biofilm. The following were investigated: 1) the toxicity of the phenolic compounds to B. a. amphirite in three different larval stages, viz. nauplius II, nauplius V and cyprid; 2) the potency of the compounds as inhibitors of larval settlement and the possible mechanism involved in settlement inhibition; and 3) the effects of the bacteria on larval settlement. The level of toxicity of the phenolic compounds varied widely for the larvae. Phlorotannins were most toxic, having LC50 values ranging from 9.47 to 40.35 μg ml‐1; phloroglucinol was least toxic, having LC50 values of 235.12 to 368.28 μg ml‐1. In general, nauplii were more sensitive to the toxicity of the phenolic compounds than cyprids. The greater sensitivity of nauplii may be due to their active feeding behavior, which exposes the interior of their bodies to the compounds by active intake. Phloroglucinol was the most potent settlement inhibitor, having an EC50 value of 0.02 μg ml‐1. Phlorotannins and tannic acid had EC50 values of 1.90 μg ml‐1 and 14.05 μg ml‐1, respectively. Phloroglucinol appeared to inhibit larval settlement through a relatively non‐toxic mechanism as its LC50 value was four orders of magnitude higher than its EC50 value. The high potency of phloroglucinol indicates that a simple constituent of a complex natural compound can be more effective than the natural compound itself. Larval settlement bioassays with monospecies bacterial films indicated that some of the bacterial species were inhibitory to larval settlement while the others showed no effect. None of the bacterial strains in this study induced larval settlement.  相似文献   

5.
Eleven strains of Streptomyces isolated from deep-sea sediments were screened for anti-larval settlement activity and all were active. Among those strains, Streptomyces sp. UST040711-290 was chosen for the isolation of bioactive antifouling compounds through bioassay-guided isolation procedure. A branched-chain fatty acid, 12-methyltetradecanoid acid (12-MTA) was purified, and it strongly inhibited the larval settlement of the polychaete Hydroides elegans. Streptomyces sp. UST040711-290 produced the highest yield of 12-MTA when the bacterium was cultured at 30°C and pH 7.0 in a modified MGY medium. To investigate the potential antifouling mechanism of 12-MTA in the larval settlement of Hydroides elegans, the expression level of four marker genes, namely, Ran GTPase activating protein (GAP), ATP synthase (AS), NADH dehydrogenase (ND), and cell division cycle protein (CDC), was compared among the untreated larvae (the control), isobutylmethylxanthine (an effective settlement inducer), and 12-MTA-treated larvae. The 12-MTA treatment down-regulated the expression of GAP and up-regulated the expression of AS in the H. elegans larvae, but did not affect the expression of ND and CDC. This study provides the first evidence that a branched-chain fatty acid produced by a marine bacterium isolated from deep-sea sediment effectively inhibited the larval settlement of the biofouling polychaete H. elegans and its effects on the expression of genes important for larval settlement.  相似文献   

6.
Hans-Uwe Dahms    Pei-Yuan Qian 《Biofouling》2013,29(6):313-321
The effects of the neurotransmitter blockers idazoxan and phentolamine on the larval settlement of three marine invertebrate species belonging to three different phyla were investigated by using in vitro concentration-response bioassays. Since neurotransmitters are known to influence metamorphic transitions in invertebrate larvae, neurotransmitter blockers were tested to evaluate their sublethal effects on larvae. The α-adrenergic antagonists idazoxan and phentolamine inhibited settlement of Balanus amphitrite (Cirripedia), Bugula neritina (Bryozoa) larvae, and larvae of the polychaete Hydroides elegans (Polychaeta) in a concentration- and taxon-dependent manner. At concentrations of 10?3 M of both agents, larvae of all three species became immobile and subsequently died within 24 h. While cumulative settlement rates were observed after 48 h for B. amphitrite and H. elegans, and after 5 h for B. neritina, > 90% of the larvae that settled did so within 24 h for the first two species and within 1 h for B. neritina. The tendency of the hydrophobic idazoxan and phentolamine to accumulate at solid surfaces most probably contributes to their successful inhibition of larval settlement. This ability makes them particularly attractive as candidates for the development of slow-release carriers in antifouling paints.  相似文献   

7.
Copper (Cu) contamination is a potential threat to the marine environment due to the use of Cu-based antifouling paints. Cu stress on larval settlement of the polychaete Hydroides elegans was investigated, and this was linked to Cu stress on biofilms and on the biofilm development process. The inductiveness of young biofilms was more easily altered by Cu stress than that of old biofilms, indicating the relative vulnerability of young biofilms. This might result from changes in bacterial survival, the bacterial community composition and the chemical profiles of young biofilms. Cu also affected biofilm development and the chemical high performance liquid chromatograph fingerprint profile. The results indicate that Cu affected larval settlement mainly through its effect on the process of biofilm development in the marine environment, and the chemical profile was crucial to biofilm inductiveness. It is strongly recommended that the effects of environmentally toxic substances on biofilms are evaluated in ecotoxicity bioassays using larval settlement of invertebrates as the end point.  相似文献   

8.
The effects of films of two strains of a marine bacterium, Deleya marina (ATCC 25374 and 27129) on the attachment response of cypris larvae of the balanomorph barnacle, Balanus amphitrite, were examined in the laboratory. Tests showed that the cell-surface hydrophobicities of the two bacteria in suspension were different. In contrast, films derived from these cells were both highly wettable (i.e., displayed high surface free energy). Assays (22 hours) compared permanent attachment of larval barnacles to films derived from exponential and stationary phase cells for both bacteria. These films either had no effect or inhibited attachment of both 0-day- and 4-day-old cypris larvae when compared with unfilmed controls. Our data indicate that inhibition of larval barnacle attachment by films of the two bacteria is the result of factors other than surface free energy. Production of chemical barnacle settlement inhibitors by the bacteria is hypothesized.Offprint requests to: J. S. Maki.  相似文献   

9.
In this study, using a bioassay-guided isolation and purification procedure, we obtained 3-chloro-2,5-dihydroxybenzyl alcohol from a marine-derived Ampelomyces species that effectively inhibited larval settlement of the tubeworm Hydroides elegans and of cyprids of the barnacle Balanus amphitrite. The inhibitive effect on larval settlement was nontoxic and the EC50 of 3-chloro-2,5-dihydroxybenzyl alcohol ranged from 3.19 μg ml−1 to 3.81 μg ml−1 while the LC50 was 266.68 μg ml−1 for B. amphitrite cyprids; EC50 ranged from 0.67 μg ml−1 to 0.78 μg ml−1, and LC50 was 2.64 μg ml−1 for competent larvae of H. elegans, indicating that inhibitive effect of this compound was nontoxic. At a concentration of 50 μg per disc, this compound showed strong inhibitive effects on the growth of 13 out of 15 marine bacterial species tested in disc diffusion bioassay. Overall, the high inhibitory activities against bacteria and larval settlement as well as the non- or low-toxic nature of this compound to the barnacle and polychaete larvae suggest this compound could be a potent antifoulant and/or antibiotic.  相似文献   

10.
Quorum sensing (QS) signals have been considered to play important roles in biofilm development and in the attractiveness of biofilms to higher organisms in marine ecosystem. In this study, bacterial QS signalsacylated homoserine lactone derivatives (AHLs) were detected in 2-, 4-, and 6-day-old subtidal biofilms by using AHLs reporter strains. N-dodecanoyl-homoserine lactone (C12-HSL) was identified in 6-day-old biofilm at a concentration of 9.04 μg cm−minus;2 (3.36 mmol l−minus;1). To investigate the possible role of AHLs in the consequent eventlarval settlement of the polychaete Hydroides elegans onto subtidal biofilmsseven biofilm-derived bacteria that effectively induced larval settlement of H. elegans, were screened for AHL production. One of them, the Vibrio sp. UST950701-007, produced N-hexanoyl-homoserine lactone (C6-HSL). Larval settlement bioassay showed that C6-HSL, C12-HSL, and 3-oxo-octanoyl-homoserine lactone (3-oxo-C8-HLS) at certain concentrations induced some initial larval settlement behaviors such as reducing swimming speed, crawling on the bottom. However, these AHLs did not effectively induce larval settlement in comparison to the effective settlement inducer 3-isobutyl-1-methylxanthine. The possible chemokinetic mechanism and indirect effects of AHLs on larval settlement are suggested.  相似文献   

11.
Marine primary fouling films, which consist of molecular organic and microbial components, have been reported to facilitate colonization of immersed surfaces by marine fouling organisms. Larvae of the cosmopolitan fouling bryozoan Bugula neritina (Linnaeus) were offered various substrata for attachment and metamorphosis. The materials were offered (a) after detergent washing, (b) after sorption of dissolved organic molecular films, and (c) after formation of primary films consisting of both microbial and adsorbed organic material. Wettability of the substrata by sea water was determined by contact angle measurements for each substratum. On washed substrata, attachment was favored with contact angles greater than ≈45° (cos contact angle <0.7). Adsorbed surface films had no effect on the low settlement of larvae on glass and high settlement on plastics. Microbial primary films, however, made glass attractive and plastics unattractive. These settlement preference changes did not correlate with the changes in wettability observed on these substrata. Dispersion of larvae over the settlement surface was random except on wettable surfaces coated with bacterial films, where settlement was strongly clustered (contagious).  相似文献   

12.
Sponges play important roles in marine ecosystems by contributing to habitat complexity and benthopelagic coupling of nutrients. Yet, the reproduction and settlement behaviors of diverse sponge species are not well understood. Here, we examined the brooding demosponge Haliclona amboinensis, which is common on shallow reefs in Bolinao, northwestern Philippines. Gravid sponges were found between the months of May and August, coinciding with warmer sea surface temperature. Sponges released parenchymella larvae from brood chambers in the mid‐morning, suggesting that light and temperature may serve as cues to initiate hatching. Larvae immediately swam toward the surface upon emergence and migrated to the bottom of the tanks 1–2 hr after release. The presence of light and crustose coralline algae induced high larval settlement. Metamorphosis proceeded rapidly in vitro, with larval cells spreading laterally on the substrate. The osculum was first visible at 3 days after settlement. The short pelagic duration of larvae in H. amboinensis promotes local recruitment and may be important for the maintenance of sponge populations in the face of disturbances.  相似文献   

13.
As environmental temperatures increase and become more seasonally variable, the ability of individuals to plastically alter their physiological responses to temperature (=acclimatize) may affect the potential for species persistence. Among marine organisms, the larval stage is often the most physiologically sensitive; larvae are also often the main dispersal stage in the life history. However, studies that address the acclimatization of marine larvae are rare. We investigated whether larvae of the gooseneck barnacle Pollicipes elegans from two temperate populations, one from the Northern Hemisphere (Mexico) and one from the Southern Hemisphere (Peru), show patterns of seasonal acclimatization to temperature. We compared the effects of temperature on swimming activity, oxygen consumption, and mortality of larvae from the two populations in both warm and cold seasons. Larvae from Mexico had higher thermal tolerances when collected in the boreal summer compared to the boreal winter, while no similar indication of seasonal acclimatization was seen in larvae from Peru. The lack of acclimatization in larvae of P. elegans from Peru may be related to recent thermal history, low selection for acclimatization due to irregular patterns of seasonal temperature change during ENSO events, or to different phylogeographic histories of Northern‐ and Southern‐hemisphere populations.  相似文献   

14.
The bryozoan Bugula neritina is a cosmopolitan marine fouling species that causes major fouling problems in sub-tropical waters. Settlement of B. neritina larvae can be triggered without an obvious external cue. Here, the negative regulatory role of nitric oxide (NO) during larval settlement of B. neritina was demonstrated to be mediated by cyclic guanosine monophosphate (cGMP). Although the regulatory role of the NO-p38 MAPK signaling axis in larval settlement was not evident, inhibition of nitric oxide synthase (NOS) led to the deactivation of p38 MAPK. Exclusive localization of NO and NO signaling components in sensory-related organs of the larvae is consistent with its signal transduction function in metamorphosis. Overall, this study provides new insights into the regulatory roles of the NO-p38MAPK/cGMP pathway in B. neritina settlement.  相似文献   

15.
Three bacterial isolates (Micrococcus sp., Rhodovulum sp., and Vibrio sp.) from natural biofilms were investigated for their effects on cyprid settlement of Balanus amphitrite in laboratory bioassays. The inhibitive effect of these bacteria was clearly demonstrated by using a choice assay, in which cyprids settled preferentially on surfaces without bacterial pretreatment over those possessing a monospecies bacterial film. This result suggested that the inhibitive effect was mediated by direct larval contact with bacterial film surface rather than the perception of diffusible bacterial products. In a no-choice assay, monospecies bacterial films of different cell densities reduced cyprid settlement in a density-dependent manner. Vibrio sp. was the most potent inhibitor among the three isolates as it effectively inhibited cyprid settlement by relatively low-density films. The cells of Vibrio sp. were the smallest among the three isolates, suggesting that the correlation between bacterial cell density and cyprid settlement might not be merely due to the reduction of free-space availability. For all three isolates, films that were killed by formaldehyde or UV treatment were as potent as untreated, live films. These films remained inhibitive even in the presence of a strong promoter for cyprid settlement, namely conspecific settlement factor (SF), obtained from adult B. amphitrite. However, SF reverted the inhibitive effect of natural biofilms developed in the intertidal region.  相似文献   

16.
Settlement of many benthic marine invertebrates is stimulated by bacterial biofilms, although it is not known if patterns of settlement reflect microbial communities that are specific to discrete habitats. Here, we characterized the taxonomic and functional gene diversity (16S rRNA gene amplicon and metagenomic sequencing analyses), as well as the specific bacterial abundances, in biofilms from diverse nearby and distant locations, both inshore and offshore, and tested them for their ability to induce settlement of the biofouling tubeworm Hydroides elegans, an inhabitant of bays and harbours around the world. We found that compositions of the bacterial biofilms were site specific, with the greatest differences between inshore and offshore sites. Further, biofilms were highly diverse in their taxonomic and functional compositions across inshore sites, while relatively low diversity was found at offshore sites. Hydroides elegans settled on all biofilms tested, with settlement strongly correlated with bacterial abundance. Bacterial density in biofilms was positively correlated with biofilm age. Our results suggest that the localized distribution of H. elegans is not determined by ‘selection’ to locations by specific bacteria, but it is more likely linked to the prevailing local ecology and oceanographic features that affect the development of dense biofilms and the occurrence of larvae.  相似文献   

17.
Abstract

Deep-sea microorganisms are a new source of bioactive compounds. In this study, crude ethyl acetate extracts of 176 strains of deep-sea bacteria, isolated from sediments of the West Pacific Ocean, were screened for their antibacterial activity against four test bacterial strains isolated from marine biofilms. Of these, 28 deep-sea bacterial strains exhibited antibacterial activity against one or more of the bacteria tested. Active deep-sea bacterial strains belonged mainly to the genera of Pseudomonas, Psychrobacter and Halomonas. Additionally, antilarval activity of 56 deep-sea bacterial strains was screened using Balanus amphitrite larvae. Seven bacterial strains produced metabolites that had strong inhibitive effects on larval settlement. None of these metabolites showed significant toxicity. The crude extract of one deep-sea Streptomyces strain could completely inhibit larval settlement at a concentration of 25 μg ml?1.  相似文献   

18.
Larval attachment and metamorphosis, commonly referred to as larval settlement, of marine sessile invertebrates can be triggered or blocked by chemical cues and affected by changes in overall protein expression pattern and phosphorylation dynamics. This study focuses on the effects of butenolide, an effective larval settlement inhibitor, on larval settlement at the proteome level in the bryozoan Bugula neritina. Liquid‐phase IEF sample prefractionation combined with 2‐DE and MALDI‐TOF MS was used to identify the differentially expressed proteins. Substantial changes occurred both in protein abundance and in phosphorylation status during larval settlement and when settling larvae were challenged with butenolide. The proteins that responded to treatment were identified as structural proteins, molecular chaperones, mitochondrial peptidases and calcium‐binding proteins. Compared with our earlier results, both genistein and butenolide inhibited larval settlement of B. neritina primarily by changes in protein abundance and the phosphorylation status of proteins but have different protein targets in the same species. Clearly, to design potent antifouling compounds and to understand the mode of action of compounds, more studies on the effects of different compounds on proteome and phosphoproteome of different larval species are required.  相似文献   

19.
The effects of culture conditions and chloramphenicol treatment on the induction of the marine bacterium Pseudoalteromonas spongiae to larval settlement of Hydroides elegans were investigated. The results showed that P. spongiae cells grown in the medium containing both yeast extract and peptone (YP-grown P. spongiae) was highly inductive to larval settlement, whereas P. spongiae cells grown in the medium containing only peptone (P-grown P. spongiae) or YP-grown P. spongiae cells treated with chloramphenicol at the onset of biofilm development (YPC-grown P. spongiae) did not induce larval settlement. Analysis of biofilm formation, biofilm structure, and the surface protein profile indicated that only the induction-capable YP-grown P. spongiae formed a well-developed biofilm, while the P-grown P. spongiae and the YPC-grown P. spongiae did not. We report here for the first time that bacterial biofilm formation was associated with its induction of larval settlement.  相似文献   

20.
Due to their habitat specificity, marine parasites present excellent systems for studying the processes and patterns of larval settlement. Settlement of Carcinonermertes errans, an egg predator of the Dungeness crab, is described here for the first time. Upon contact with a host individual, competent larvae of C. errans settled on the crab's exoskeleton and migrated under the abdominal flap within 24 h. When removed from the host, recently settled worms retained their larval characteristics. After 48 h on the host, however, metamorphosis proceeded and larvae became juvenile worms. Additional field studies showed that competent larvae were present in the waters of the Coos Bay Estuary during the months of August through early November, could infect crab hosts directly from the water column, and exhibited density‐dependent gregarious settlement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号