首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electro-rheological fluids are technologically relevant colloidal dispersions that on application of an applied electric field manifest a yield stress and dramatic increase in viscosity. To assist optimisation of these fluids we have performed molecular simulations to understand the basic mechanisms operating in these fluids.

In this work a dispersion of field-aligned dipoles is simulated in shear flow by non-equilibrium Brownian dynamics. In agreement with experiment, a plot of the simultated relative, η r , against a dimensionless characteristic ER parameter, the Mason Number, Mn, exhibits a plateau region (at low electric fields and/or high shear rates) prior to a steep increase in viscoisty for Mn smaller. Although, the simulations exhibit only an approximate data collapse according to the Mn. Following on from the first paper in this series we relate the origins of the ER effect in more detail to the temporal structural changes that take place in the fluid. We find for example, that the fluids reorganise microscopically into layers of strings of particles in the shearing plane at low Mn, a structure which is destroyed on entry onto the plateau in η r at higher Mn. We suggest how the model could be made more realistic in future studies.  相似文献   

2.
Considerable scientific and industrial interest is currently being focused on a class of materials known as electrorheological (ER) fluids, which display remarkable rheological behaviour, being able to convert rapidly and repeatedly from a liquid to solid when an electric field (E) is applied or removed. In this study, biodegradable cellulose was modified and converted to their carboxyl salts. Modified cellulose is characterised by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA) and conductivity measurements. Suspensions of cellulose (C) and modified cellulose (MC) were prepared in insulated corn oil (CO). The effects of electric field strength, shear rate, shear stress, temperature, etc. of these suspensions onto ER activity were determined. Rheological measurements were carried out via a rotational rheometer with a high-voltage generator to investigate the effects of electric field strength and particle concentration on ER performance.The results show that the ER properties are enhanced by increasing the particle concentration and electric field strength. Also the cellulose-based ER fluids exhibit viscoelastic behaviour under an applied electric field due to the chain formation induced by electric polarization between particles.  相似文献   

3.
B Prüger  P Eppmann  E Donath    J Gimsa 《Biophysical journal》1997,72(3):1414-1424
Common dynamic light scattering (DLS) methods determine the size and zeta-potential of particles by analyzing the motion resulting from thermal noise or electrophoretic force. Dielectric particle spectroscopy by common microscopic electrorotation (ER) measures the frequency dependence of field-induced rotation of single particles to analyze their inherent dielectric structure. We propose a new technique, electrorotational light scattering (ERLS). It measures ER in a particle ensemble by a homodyne DLS setup. ER-induced particle rotation is extracted from the initial decorrelation of the intensity autocorrelation function (ACF) by a simple optical particle model. Human red blood cells were used as test particles, and changes of the characteristic frequency of membrane dispersion induced by the ionophore nystatin were monitored by ERLS. For untreated control cells, a rotation frequency of 2 s-1 was induced at the membrane peak frequency of 150 kHz and a field strength of 12 kV/m. This rotation led to a decorrelation of the ACF about 10 times steeper than that of the field free control. For deduction of ERLS frequency spectra, different criteria are discussed. Particle shape and additional field-induced motions like dielectrophoresis and particle-particle attraction do not significantly influence the criteria. For nystatin-treated cells, recalculation of dielectric cell properties revealed an ionophore-induced decrease in the internal conductivity. Although the absolute rotation speed and the rotation sense are not yet directly accessible, ERLS eliminates the tedious microscopic measurements. It offers computerized, statistically significant measurements of dielectric particle properties that are especially suitable for nonbiological applications, e.g., the study of colloidal particles.  相似文献   

4.
A biological membrane undergoes a reversible permeability increase through structural changes in the lipid domain when exposed to high external electric fields. The present study shows the occurrence of electric field-induced changes in the conductance of the proton channel of the H(+)-ATPase as well as electric field-induced structural changes in the lipid-protein domain of photosystem (PS) II in the photosynthetic membrane. The study was carried out by analyzing the electric field-stimulated delayed luminescence (EPL), which originates from charge recombination in the protein complexes of PS I and II of photosynthetic vesicles. We established that a small fraction of the total electric field-induced conductance change was abolished by N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of the H(+)-ATPase. This reversible electric field-induced conductance change has characteristics of a small channel and possesses a lifetime < or = 1 ms. To detect electric field-induced changes in the lipid-protein domains of PS II, we examined the effects of phospholipase A2 (PLA2) on EPL. Higher values of EPL were observed from vesicles that were exposed in the presence of PLA2 to an electroporating electric field than to a nonelectroporating electric field. The effect of the electroporating field was a long-lived one, lasting for a period > or = 2 min. This effect was attributed to long-lived electric field-induced structural changes in the lipid-protein domains of PS II.  相似文献   

5.
The study examines the relationship between electric field-induced conductivity and permeability changes in a biological membrane (electroporation) and the amplitude-duration parameters of the externally applied electric field. These reversible changes were characterized in giant photosynthetic membrane vesicles by means of the calibrated response of an intrinsic voltage-sensitive optical probe (electrophotoluminescence) and by the uptake studies of dextran-FITC fluorescent probes of different molecular weights. We quantitatively monitored electric field-induced conductivity changes by translating the electrophotoluminescence changes into conductivity changes. This was carried out by measuring the attenuation of the electrophotoluminescent signal after the addition of known amounts of gramicidin. The results demonstrate that electroporation involves the reversible formation of discrete holes in the membrane having radii <5.8 nm. The total area of the electric field-induced holes was 0.075% of the total surface of the vesicle. The formation of the electropores was affected differently by the electric field strength than by its duration. Increase in electric field strength caused increase in the total area of the vesicle that undergoes electroporation. Increase in the duration of the electric field increases the area of single electropores. Each of the two electric parameters can be rate limiting for the dynamics of electropore formation. These results are in accordance with the model of electroporation based on electric field-induced expansion of transient aqueous holes.  相似文献   

6.
Response times with electrical fields of gellan and xanthan dry powder suspensions of 25, 32 and 53 μm average diameter and concentrations of 1.0, 1.5 and 2.0% (w/w) dispersed in commercial corn oil were optically measured through a specifically designed set up. In all cases, the delay time was proportional to 1/Ea, where E is the applied field and a is an adjustable parameter. The values of parameter a were very different from the typical value of some known electrorheolgical fluids. Response time of gellan suspensions was shorter than the one obtained for xanthan and it is comparable to the time found by using silica particles in silicon oil. Response times for cellulose were very large and the fibrillation phenomenon was negligible for E<1.0 kv/mm.

Viscosity measurements of semidiluted xanthan, gellan and cellulose suspensions (1.0 and 1.5% w/w) under the influence of electrical fields, were performed in a parallel plates rheometer. Results in the range of stress <70 Pa showed that viscosity values of gellan suspensions were larger than those obtained with xanthan or cellulose under the same applied electric field at shear rates higher than 10 s−1. However, cellulose suspensions showed larger viscosity values compared with the ones measured with xanthan and gellan suspensions at very low shear rates. Dielectric measurements of cellulose, xanthan and gellan 1.5% w/w suspensions were performed in the range 100–8×104 Hz. Results agree with a Maxwell–Wagner type relaxation model.  相似文献   


7.
Liu H  Qian S  Bau HH 《Biophysical journal》2007,92(4):1164-1177
The electric field-induced translocation of cylindrical particles through nanopores with circular cross sections is studied theoretically. The coupled Nernst-Planck equations (multi-ion model, MIM) for the concentration fields of the ions in solution and the Stokes equation for the flow field are solved simultaneously. The predictions of the multi-ion model are compared with the predictions of two simplified models based on the Poisson-Boltzmann equation (PBM) and the Smoluchowski's slip velocity (SVM). The concentration field, the ionic current though the pore, and the particle's velocity are computed as functions of the particle's size, location, and electric charge; the pore's size and electric charge; the electric field intensity; and the bulk solution's concentration. In qualitative agreement with experimental data, the MIM predicts that, depending on the bulk solution's concentration, the translocating particle may either block or enhance the ionic current. When the thickness of the electric double layer is relatively large, the PBM and SVM predictions do not agree with the MIM predictions. The limitations of the PBM and SVM are delineated. The theoretical predictions are compared with and used to explain experimental data pertaining to the translocation of DNA molecules through nanopores.  相似文献   

8.
9.
The characterizations of gating particles of ionic channels in nerve membranes by their equivalent valencies and their electric dipole moment changes are compared. The gating particle is represented as a system of electric charges in fixed positions in an external electric field and the potential energy of such a system is calculated in the approximation of a constant electric field. The proper expression of the Boltzmann distribution of the gating particles is presented. It is shown that the dipole moment of transition of the gating particle is the only proper thermodynamic (macroscopic) characteristics of the gating particles based on the available experimental information and does not depend on any microscopic assumption as the equivalent valency does.  相似文献   

10.
Previously, we have theoretically studied the possibility of electrical rhythmic entrainment of carrier-mediated ion transporters, and experimentally realized synchronization and acceleration of the Na/K pumping rate in the cell membrane of skeletal muscle fibers by a specially designed synchronization modulation electric field. In these studies we either used cut fibers under a voltage clamp or intact fibers, but in the presence of ion channels blockers. A question remained as to whether the field-induced activation observed in the pump molecules could effectively increase the intracellular ionic concentration and the membrane potential at physiological conditions. In this paper, we studied the effects of the field on intact fibers without any channel blockers. We monitored the field-induced changes in the ionic concentration gradient across the cell membrane and the membrane potential non-invasively by using a fluorescent probe and confocal microscopic imaging techniques. The results clearly show that the entrainment of the pump molecules by the synchronization modulation electric field can effectively increase the ionic concentration gradient, and hence, hyperpolarize the membrane potential.  相似文献   

11.
Both endogenous lectins and DC electric fields may control aspects of early nerve growth and nerve guidance. To test whether such endogenous cues interact, lectins of varying sugar affinity and valency were studied for effects on electric field induced growth and reorientation of cultured Xenopus neurites. Concanavalin A (Con A), succinylated concanavalin A (S-Con A), and wheat germ agglutinin all completely inhibited field-induced cathodal reorientation. Lentil and pea lectins, which share the same sugar affinity as Con A/S-Con A, were only partially effective in inhibiting reorientation. Because S-Con A does not alter lateral mobility of membrane receptors, the previously accepted notion that Con A inhibited field-induced reorientation by preventing receptors from translocating and becoming redistributed asymmetrically in the membrane may be oversimplified. There are likely to be additional steric interactions that Con A and S-Con A share that inactive asymmetrically redistributed receptors and prevent reorientation. Additionally, nerves growing in an applied field branch more commonly toward the cathode. Con A and S-Con A alone prevented this development of asymmetric branching. All the lectins tested prevented the normal field-induced increase in nerve growth rate, while all, except peanut agglutinin, prevented the usual faster growth cathodally than anodally. We suggest that lectin interactions with electric field effects in vitro may involve modulation of neuronal nicotinic acetylcholine receptors, neurotrophin receptors, or voltage-dependent calcium channels. Similar interactions between endogenous lectins and endogenous electric fields are to be expected. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Mixed-valency can occur in a variety of biological systems, such as the Cu(I)–Cu(II) pair in hemocyanin, Fe(II)–Fe(III) in many iron–oxo and iron–sulfur proteins, and Mn(II)–Mn(III) or Mn(III)–Mn(IV) in the photosynthetic water oxidase. The characterization of the ground states of such systems often has been controversial. Stark Effect spectroscopy is proving to be a valuable tool for the elucidation of systems of this type. The purpose of the present work is to develop theory for the spectral lineshape for the case where the electron donor and acceptor are coupled directly in a strong electric field. A mixed-valence dimer with an applied electric field aligned along the internuclear axis is studied using a two-site small-polaron model. Potential energy surfaces are calculated in the adiabatic (Born–Oppenheimer) approximation. It is shown that two nuclear coordinates (one totally symmetric and one antisymmetric) are coupled to the electronic motion, whereas only the antisymmetric coordinate is coupled in the absence of an electric field. For a strongly localized system, such as a protein system where electron donor and acceptor sites are separated by large distances, the potential surfaces become highly asymmetrical, but coupling to the totally symmetric mode is not significant. For a localized case corresponding to a valence-trapped two-metal cluster, the displacement along the totally symmetric coordinate is directly proportional to the applied field strength. Along the antisymmetric coordinate, the lowest potential surface is an asymmetric double well. For a delocalized (valence-averaged) two-metal cluster, there is significant displacement along the antisymmetric coordinate, an effect which also vanishes in the absence of an applied field. Contributions to the linewidth are estimated. Localized systems show larger field-induced shift in frequency maximum, whereas delocalized systems show greater field-induced line broadening.  相似文献   

13.
An experimental study is performed to measure the terminal settling velocities of spherical particles in surfactant based shear thinning viscoelastic (VES) fluids. The measurements are made for particles settling in unbounded fluids and fluids between parallel walls. VES fluids over a wide range of rheological properties are prepared and rheologically characterized. The rheological characterization involves steady shear-viscosity and dynamic oscillatory-shear measurements to quantify the viscous and elastic properties respectively. The settling velocities under unbounded conditions are measured in beakers having diameters at least 25x the diameter of particles. For measuring settling velocities between parallel walls, two experimental cells with different wall spacing are constructed. Spherical particles of varying sizes are gently dropped in the fluids and allowed to settle. The process is recorded with a high resolution video camera and the trajectory of the particle is recorded using image analysis software. Terminal settling velocities are calculated from the data.The impact of elasticity on settling velocity in unbounded fluids is quantified by comparing the experimental settling velocity to the settling velocity calculated by the inelastic drag predictions of Renaud et al.1 Results show that elasticity of fluids can increase or decrease the settling velocity. The magnitude of reduction/increase is a function of the rheological properties of the fluids and properties of particles. Confining walls are observed to cause a retardation effect on settling and the retardation is measured in terms of wall factors.  相似文献   

14.
Abstract

We introduce a new method for simulating fluids in which the particles are constrained to lie on a lattice, but the momenta of the particles are permitted any continuous value. The model includes long-range interactions and is shown to obey the standard macroscopic fluid equations, microscopic time reversal symmetry, and detailed balance.  相似文献   

15.
Rheological properties are important for the design and modelling of handling and treating fluids. In the present study, the viscosity of liquid manure (about 10% total solids) was measured at different shear rates (2.38-238 s(-1)). The effect of temperature on the viscosity at different shear rates was also studied. The results showed that manure has non-Newtonian flow properties, because the viscosity strongly depended on the applied shear rate. The results showed also that manure behaves like real plastic materials. The power-law model of the shear stress and the rate of shear showed that the magnitude of the consistency coefficient decreased while increasing the temperature, with high values of the determination coefficient. Moreover, the results showed that the Arrhenius-type model fitted the temperature effect on manure viscosity very well (R2 at least 0.95) with calculated activation energy of 17.0+/-0.3 kJ mol(-1).  相似文献   

16.
Expressions for the radial electric field in tokamaks are derived with allowance for an additional contribution of the longitudinal electron viscosity (or the associated Ware drift). It is shown that, in transient processes during which the toroidal electric field at the plasma edge increases, the additional electric field can become rather strong. An increase in the shear of the poloidal plasma rotation can trigger the L-H transition. That the experimentally observed transitions to an improved confinement mode can be ascribed to this effect is illustrated by simulating discharges in the current ramp-up experiments in the Tuman-3M tokamak.  相似文献   

17.
The tank-treading rotation of red blood cells (RBCs) in shear flows has been studied extensively with experimental, analytical, and numerical methods. Even for this relatively simple system, complicated motion and deformation behaviors have been observed, and some of the underlying mechanisms are still not well understood. In this study, we attempt to advance our knowledge of the relationship among cell motion, deformation, and flow situations with a numerical model. Our simulation results agree well with experimental data, and confirm the experimental finding of the decrease in frequency/shear-rate ratio with shear rate and the increase of frequency with suspending viscosity. Moreover, based on the detailed information from our simulations, we are able to interpret the frequency dependency on shear rate and suspending viscosity using a simple two-fluid shear model. The information obtained in this study thus is useful for understanding experimental observations of RBCs in shear and other flow situations; the good agreement to experimental measurements also shows the potential usefulness of our model for providing reliable results for microscopic blood flows.  相似文献   

18.
Though the importance of membrane fluidity for cellular function has been well established for decades, methods for measuring lipid bilayer viscosity remain challenging to devise and implement. Recently, approaches based on characterizing the Brownian dynamics of individual tracers such as colloidal particles or lipid domains have provided insights into bilayer viscosity. For fluids in general, however, methods based on single-particle trajectories provide a limited view of hydrodynamic response. The technique of two-point microrheology, in which correlations between the Brownian dynamics of pairs of tracers report on the properties of the intervening medium, characterizes viscosity at length-scales that are larger than that of individual tracers and has less sensitivity to tracer-induced distortions, but has never been applied to lipid membranes. We present, to our knowledge, the first two-point microrheological study of lipid bilayers, examining the correlated motion of domains in phase-separated lipid vesicles and comparing one- and two-point results. We measure two-point correlation functions in excellent agreement with the forms predicted by two-dimensional hydrodynamic models, analysis of which reveals a viscosity intermediate between those of the two lipid phases, indicative of global fluid properties rather than the viscosity of the local neighborhood of the tracer.  相似文献   

19.
Pohl M  Wendt MO  Koch B  Vlastos GA 《Biorheology》2000,37(4):313-324
Human or animal blood is normally used as a test fluid for the in vitro evaluation of hemolysis by artificial organs. However, blood has some disadvantages (large biological variability and problems with cleaning the devices). For that reason, we searched for a reproducible technical fluid with blood-like flow characteristics that exhibits similar shear depending destruction. In this study, a direct comparison between erythrocyte damage of bovine blood and shear-induced degradation of polyacrylamide solution is given. A uniform shear field was applied to the fluids using a shear device with a plate-plate geometry. It was shown that similarities exist between erythrocytes disaggregation and breakdown of super molecular structures in polymer solutions, caused by mechanical stress. In both cases steady low shear viscositity was diminished and the elastic component of complex viscosity of blood and polymer solutions has been reduced. There is a correlation between shear-induced hemolysis of bovine blood and mechanical polymer-degradation, which depends on the applied shear stresses.  相似文献   

20.
C3H/10T1/2 mouse embryo fibroblasts were stimulated by a steady electric field ranging up to 15 V/cm. The percentage of spindle-shaped cells increased with the field strength and duration of the stimulation. These cells oriented preferentially with their long axis perpendicular to the field direction. A small percentage of the cells were found to move slightly toward the cathode during the course of electric stimulation. Although no apparent field-induced redistribution of fluorescent-labelled concanavalin A (conA) receptor along the cell periphery was observed, the bright perinuclear area appeared preferentially on the anode side. Correlative fluorescence and scanning electron microscopy (SEM) revealed no difference in the density of conA-gold microsphere labels on either side of the cell. The density of intramembranous particles on the E-face of the plasma membrane was 54% higher on the anode side than on the cathode side of the cell. The microfilament bundles were observed to be disrupted after 30 min of 10 V/cm stimulation by rhodamine phalloidin labelling of F-actin. The cell sensitivity to electric field-induced reorientation and cell shape changes was reduced by pretreatment with conA, and to a lesser extent, with succinyl conA or wheat germ agglutinin (WGA). ConA pretreatment alone also reduced the prominence of microfilament bundles. However, post-field lectin binding to the cell has no effect on cell recovery. It is possible that the generally flat 10T1/2 cells retract and realign in order to minimize the disruption of their membrane potential. The conA binding-mediated receptor-cytoskeletal linkage temporarily immobilizes the cell and inhibits subsequent field-induced shape changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号