共查询到20条相似文献,搜索用时 15 毫秒
1.
High‐performance zeolitic imidazolate frameworks (ZIFs)/polybenzimidazole (PBI) nanocomposites are molecularly designed for hydrogen separation at high temperatures, and demonstrate it in a useful configuration as dual‐layer hollow fibers for the first time. By incorporating as‐synthesized nanoporous ZIF‐8 nanoparticles into the high thermal stability but extremely low permeability polybenzimidazole (PBI), the resultant mixed matrix membranes show an impressive enhancement in H2 permeability as high as a hundred times without any significant deduction in H2/CO2 selectivity. The 30/70 ZIF‐8/PBI dense membrane has a H2 permeability of 105.4 Barrer and a H2/CO2 selectivity of 12.3. This performance is far superior to ZIF‐7/PBI membranes and is the best ever reported data for H2‐selective polymeric materials in the literature. Meanwhile, defect‐free ZIF‐8‐PBI/Matrimid dual‐layer hollow fibers are successfully fabricated, without post‐annealing and coating, by optimizing ZIF‐8 nanoparticle loadings, spinning conditions, and solvent‐exchange procedures. Two types of hollow fibers targeted at either high H2/CO2 selectivity or high H2 permeance are developed: i) PZM10‐I B fibers with a medium H2 permeance of 64.5 GPU (2.16 ×10?8 mol m?2 s?1 Pa?1) at 180°C and a high H2/CO2 selectivity of 12.3, and, ii) PZM33‐I B fibers with a high H2 permeance of 202 GPU (6.77 ×10?8 mol m?2 s?1 Pa?1) at 180°C and a medium H2/CO2 selectivity of 7.7. This work not only molecularly designs novel nanocomposite materials for harsh industrial applications, such as syngas and hydrogen production, but also, for the first time, synergistically combines the strengths of both ZIF‐8 and PBI for energy‐related applications. 相似文献
2.
Liping Du Wei Chen Ping Zhu Yulan Tian Yating Chen Chunsheng Wu 《Biotechnology journal》2021,16(2):1900424
In recent decades, fast advancements in the fields of metal-organic frameworks (MOFs) are providing unprecedented opportunities for the development of novel functional MOFs for various biosensing applications. Exciting progress is achieved due to the combination of MOFs with various functional components, which introduces novel structures and new features to the MOFs-based biosensing applications, such as higher stability, higher sensitivity, higher flexibility, and higher specificity. This review aims to be a comprehensive summary of the most recent advances in the development of functional MOFs for various biosensing applications, placing special attention on important contributions in recent 3 years. In this review, the most recent developments in design and synthesis of functional MOFs for biosensing applications are summarized. MOFs-based biosensing applications are outlined according to the central roles of MOFs in biosensors, which include carriers of sensitive elements, enzyme-mimic elements, electrochemical signaling, optical signaling, and gas sensing. Finally, the current challenges and future development trends of functional MOFs for biosensing applications are proposed and discussed. 相似文献
3.
来源于鞘氨醇杆菌(Sphingobacterium siyangensis)中的α-氨基酸酯酰基转移酶(α-amino acid ester acyltransferase, SAET),是目前发现的丙谷二肽催化合成能力最高的酶之一,能够以非保护的L-丙氨酸甲酯盐酸盐、L-谷氨酰胺合成L-丙氨酰-L-谷氨酰胺[即丙谷二肽(L-alanyl-L-glutamine, Ala-Gln)]。为了解决其在催化过程中的稳定问题,本研究在水相体系中采用“一步法”快速制备固定化细胞(SAET@ZIF-8),在构筑金属有机沸石咪唑骨架结构(ZIF-8)的同时,将表达有SAET的大肠杆菌(Escherichia coli)包裹在其内部空间中。在此基础上,对其结构、催化活性和重复使用性及储存稳定性等催化性能进行探究。结果表明,通过该方法制备的SAET@ZIF-8纳米颗粒与文献报道的ZIF-8材料的形貌基本相同,细胞的引入没有明显改变ZIF-8的形貌。重复使用7次后,SAET@ZIF-8仍能保持67%左右的初始酶活;室温下放置4d时,固定化酶还保留有50%左右的初始酶活,表明SAET@ZIF-8具有较好的重... 相似文献
4.
为进一步提高口蹄疫(foot-and-mouthdisease,FMD)病毒样颗粒(virus-likeparticles,VLPs)疫苗的免疫效果,本研究采用仿生矿化方法,将Zn2+和2-甲基咪唑按照不同浓度配比制备了不同粒径的FMDV VLPs-沸石咪唑骨架-8 (zeolitic imidazolate framework-8, ZIF-8)复合物,以探究尺寸效应对免疫效果的影响。结果显示,成功制备出3种不同粒径的FMDV VLPs-ZIF-8,粒径分别约为70、100、1 000 nm。细胞毒性和组织病理学试验表明,3种复合物均具有良好的生物安全性。小鼠免疫试验表明,3种复合物均能明显提高中和抗体和特异性抗体水平,并且随着复合物体积的减小,其免疫效果也随之增强。本研究表明,ZIF-8包封FMDV VLPs可显著增强其免疫效果,且具有尺寸依赖性。 相似文献
5.
Junhua Song Chengzhou Zhu Bo Z. Xu Shaofang Fu Mark H. Engelhard Ranfeng Ye Dan Du Scott P. Beckman Yuehe Lin 《Liver Transplantation》2017,7(2)
Cobalt‐based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical measurements reveal that the electrical conductivity and electrochemical activity are closely associated with the Co2P/CoP mixed phase behaviors upon Cu metal doping. This relationship is found to be the decisive factor for enhanced electrocatalytic performance. Moreover, the precise control of Cu content in Co‐host lattice effectively alters the Gibbs free energy for H* adsorption, which is favorable for facilitating reaction kinetics. Impressively, an optimized performance has been achieved with mild Cu doping in Cu0.3Co2.7P/nitrogen‐doped carbon (NC) which exhibits an ultralow overpotential of 0.19 V at 10 mA cm–2 and satisfying stability for OER. Cu0.3Co2.7P/NC also shows excellent HER activity, affording a current density of 10 mA cm–2 at a low overpotential of 0.22 V. In addition, a homemade electrolyzer with Cu0.3Co2.7P/NC paired electrodes shows 60% larger current density than Pt/RuO2 couple at 1.74 V, along with negligible catalytic deactivation after 50 h operation. The manipulation of electronic structure by controlled incorporation of second metal sheds light on understanding and synthesizing bimetallic transition metal phosphides for electrolysis‐based energy conversion. 相似文献
6.
Development of effective, stable, and economic electrocatalysts is critical for further implementation of fuel cells, water electrolysis, and metal–air batteries in clean energy conversion technologies. As a subfamily of metal–organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs) possess the characteristics of both MOFs and zeolites, showing highly porous structures, large surface area, and open catalytic active sites. This review presents materials design strategies for constructing improved electrocatalysts based on ZIF precursors/templates, with special emphasis on the varieties of derivatives, controllable building of active sites, the construction of macroscopic structure, and the favored electrocatalytic reactions based on these materials. These ZIF‐derived N‐doped carbon‐based composites or compounds have exhibited remarkable activity and stability for a broad electrocatalysis application, displaying great potential to replace noble‐metal‐based catalysts. The challenges and perspectives regarding ZIF‐derived electrocatalysts are also discussed for better development of ZIF‐derived electrocatalysts. 相似文献
7.
Water Splitting: Bimetallic Cobalt‐Based Phosphide Zeolitic Imidazolate Framework: CoPx Phase‐Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting (Adv. Energy Mater. 2/2017)
下载免费PDF全文

Junhua Song Chengzhou Zhu Bo Z. Xu Shaofang Fu Mark H. Engelhard Ranfeng Ye Dan Du Scott P. Beckman Yuehe Lin 《Liver Transplantation》2017,7(2)
8.
Ziliang Chen Yuan Ha Huaxian Jia Xiaoxiao Yan Mao Chen Miao Liu Renbing Wu 《Liver Transplantation》2019,9(19)
Construction of well‐defined metal–organic framework precursor is vital to derive highly efficient transition metal–carbon‐based electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in water splitting. Herein, a novel strategy involving an in situ transformation of ultrathin cobalt layered double hydroxide into 2D cobalt zeolitic imidazolate framework (ZIF‐67) nanosheets grafted with 3D ZIF‐67 polyhedra supported on the surface of carbon cloth (2D/3D ZIF‐67@CC) precursor is proposed. After a low‐temperature pyrolysis, this precursor can be further converted into hybrid composites composed of ultrafine cobalt nanoparticles embedded within 2D N‐doped carbon nanosheets and 3D N‐doped hollow carbon polyhedra (Co@N‐CS/N‐HCP@CC). Experimental and density functional theory calculations results indicate that such composites have the advantages of a large number of accessible active sites, accelerated charge/mass transfer ability, the synergistic effect of components as well as an optimal water adsorption energy change. As a result, the obtained Co@N‐CS/N‐HCP@CC catalyst requires overpotentials of only 66 and 248 mV to reach a current density of 10 mA cm?2 for HER and OER in 1.0 m KOH, respectively. Remarkably, it enables an alkali‐electrolyzer with a current density of 10 mA cm?2 at a low cell voltage of 1.545 V, superior to that of the IrO2@CC||Pt/C@CC couple (1.592 V). 相似文献
9.
10.
Dyes exposure in aquatic environment creates risks to human health and biota due to their intrinsic toxic mutagenic and carcinogenic characteristics. In this work, a metal-organic frameworks materials, zeolitic imidazolate framework-8 (ZIF-8), was synthesized through hydrothermal reaction for the adsorptive removal of harmful Congo red (CR) from aqueous solution. Results showed that the maximum adsorption capacity of CR onto ZIF-8 was ultrahigh as 1250 mg g?1. Adsorption behaviors can be successfully fitted by the pseudo-second order kinetic model and the Langmuir isotherm equation. Solution conditions (pH condition and the co-exist anions) may influent the adsorption behaviors. The adsorption performance at various temperatures indicated the process was a spontaneous and endothermic adsorption reaction. The enhanced adsorption capacity was determined due to large surface area of ZIF-8 and the strong interactions between surface groups of ZIF-8 and CR molecules including the electrostatic interaction between external active sites Zn?OH on ZIF-8 -and ?SO3 or –N=N– sites in CR molecule, and the π–π interaction. 相似文献
11.
Xingkai Huang Xiaopei Xu Chao Li Dengfeng Wu Daojian Cheng Dapeng Cao 《Liver Transplantation》2019,9(22)
Hydrogen evolution reaction (HER) is a key reaction in water splitting, and developing efficient and robust non‐noble electrocatalysts for HER is still a great challenge for large‐scale hydrogen production. Herein, a vertically aligned core–shell structure grown on Ti foil with CoP nanoarray as a core and N,P‐doped carbon (NPC) as a shell (CoP/NPC/TF) is first reported as an efficient electrocatalyst for HER. Results indicate that CoP/NPC/TF only demands the overpotentials of 91 and 80 mV to drive the current density of 10 mA cm?2 in acidic and alkaline solutions. The electrochemical measurements and theoretical calculations show that the synergy of CoP nanorod core and porous NPC shell enhances HER performance significantly, because the introduction of porous NPC shell not only offers more active sites but also improves the electrical conductivity and durability of the sample in acidic and alkaline solutions. Density functional theory calculation further reveals that all the C atoms between N and P atoms in CoP/NPC are the most efficient active sites, which greatly improve the HER performance. The identification of active species in this work provides an effective strategy to design and synthesize the low‐cost, high‐efficient, and robust CoP‐based electrocatalysts. 相似文献
12.
Zeolitic imidazolate framework‐8 (ZIF‐8) loading rhodamine‐B (ZIF‐8@rhodamine‐B) nanocomposites was proposed and used as ratiometric fluorescent sensor to detect copper(II) ion (Cu2+). Scanning electron microscopy, Fourier transform infrared spectroscopy, X‐ray powder diffraction, nitrogen adsorption/desorption isotherms and fluorescence emission spectroscopy were employed to characterize the ZIF‐8@rhodamine‐B nanocomposites. The results showed the rhodamine‐B was successfully assembled on ZIF‐8 based on the π‐π interaction and the hydrogen bond between the nitrogen atom of ZIF‐8 and –COOH of rhodamine‐B. The as‐obtained ZIF‐8@rhodamine‐B nanocomposites were octahedron with size about 150–200 nm, had good water dispersion, and exhibited the characteristic fluorescence emission of ZIF‐8 at 335 nm and rhodamine‐B at 575 nm. The Cu2+ could quench fluorescence of ZIF‐8 rather than rhodamine‐B. The ZIF‐8 not only acted as the template to assemble rhodamine‐B, but also was employed as the signal fluorescence together with the fluorescence of rhodamine‐B as the reference to construct a novel ratiometric fluorescent sensor to detect Cu2+. The resulted ZIF‐8@rhodamine‐B nanocomposite fluorescence probe showed good linear range (68.4 nM to 125 μM) with a low detection limit (22.8 nM) for Cu2+ combined with good sensitivity and selectivity. The work also provides a better way to design ratiometric fluorescent sensors from ZIF‐8 and other fluorescent molecules. 相似文献
13.
用崔道珊等构建的噬菌体T7溶菌酶工程菌株,培养物经超声破碎和DE52,CM52柱层析纯化,我们得到电泳纯的T7溶菌酶,分子量为17000,最适反应pH为8.0.其热稳定性欠佳,保温37℃,5min即丧失酶活21%. 相似文献
14.
Sorting nexins(SNXs)是一类含有SNX-PX结构域,并在细胞内吞和内体分选运输过程中发挥重要调节作用的蛋白。SNX7是SNXs家族中的一员,含有PX结构域和BAR结构域,属于SNX-PX-BAR亚家族。斑马鱼实验表明,SNX7是在肝脏中大量表达的抗凋亡蛋白,并在胚胎肝脏的发育中发挥关键作用。为了从蛋白水平对SNX7进行研究,首先将编码人源PX-BARSNX7(SNX7的一个片段,包含PX和BAR结构域)的cDNA片段插入到原核表达载体p28a中,再将重组质粒转化到大肠杆菌Rosseta 2(DE3)中诱导表达,并用亲和层析、离子交换和分子筛层析对PX-BARSNX7进行了纯化。Western blotting结果表明,亲和层析、离子交换和分子筛层析纯化后获得了高纯度的PX-BARSNX7蛋白。动态光散射实验显示PX-BARSNX7蛋白均一性良好。磷脂结合实验表明,PX-BARSNX7具有较为广泛的磷脂酰肌醇结合能力,能够与PtdIns(5)P、PtdIns(4,5)P2和PtdIns(3,4,5)P3结合。 相似文献
15.
16.
Cher Hon Lau Songlin Liu Donald R. Paul Jianzhong Xia Yan‐Ching Jean Hongmin Chen Lu Shao Tai‐Shung Chung 《Liver Transplantation》2011,1(4):634-642
An effective separation of CO2 from H2 can be achieved using currently known polyethylene oxide (PEO)‐based membranes at low temperatures but the CO2 permeability is inadequate for commerical operations. For commercial‐scale CO2/H2 separation, CO2 permeability of these membranes must be significantly enhanced without compromising CO2/H2 selectivity. We report here exceptional CO2/H2 separation properties of a nanohybrid membrane comprising polyethylene glycol methacrylate (PEGMA) grafts on an organic‐inorganic membrane (OIM) consisting of a low molecular weight polypropylene oxide (PPO)‐PEO‐PPO diamine and 3‐glycidyloxypropyltrimethoxysilane (GOTMS), an alkoxysilane. The CO2 gas permeability of this nanohybrid membrane can reach 1990 Barrer with a CO2/H2 selectivity of 11 at 35 °C for a mixed gas mixture comprising 50% CO2 ‐ 50% H2 at 3.5 atm. The transformation of the inorganic silica phase from a well‐dispersed network of finely defined nanoparticles to rough porous clusters appears to be responsible for this OIM membrane exceeding the performance of other state‐of‐the‐art PEO‐based membranes. 相似文献
17.
Michaela Nicole Hoehne Lianne J H C Jacobs Kim Jasmin Lapacz Gaetano Calabrese Lena Maria Murschall Teresa Marker Harshita Kaul Aleksandra Trifunovic Bruce Morgan Mark Fricker Vsevolod V Belousov Jan Riemer 《The EMBO journal》2022,41(7)
Hydrogen peroxide (H2O2) has key signaling roles at physiological levels, while causing molecular damage at elevated concentrations. H2O2 production by mitochondria is implicated in regulating processes inside and outside these organelles. However, it remains unclear whether and how mitochondria in intact cells release H2O2. Here, we employed a genetically encoded high‐affinity H2O2 sensor, HyPer7, in mammalian tissue culture cells to investigate different modes of mitochondrial H2O2 release. We found substantial heterogeneity of HyPer7 dynamics between individual cells. We further observed mitochondria‐released H2O2 directly at the surface of the organelle and in the bulk cytosol, but not in the nucleus or at the plasma membrane, pointing to steep gradients emanating from mitochondria. Gradient formation is controlled by cytosolic peroxiredoxins, which act redundantly and with a substantial reserve capacity. Dynamic adaptation of cytosolic thioredoxin reductase levels during metabolic changes results in improved H2O2 handling and explains previously observed differences between cell types. Our data suggest that H2O2‐mediated signaling is initiated only in close proximity to mitochondria and under specific metabolic conditions. 相似文献
18.
Bone morphogenetic protein-7 (BMP-7) is a multifunctional cytokine of the transforming growth factor β superfamily, which induces bone formation and plays an important role during bone tissue repair and embryonic development. In this study, human BMP-7 (hBMP-7) cDNA was cloned and expressed in Escherichia coli, and its yield was approximately 30% of the total bacterial protein. After the bacteria were lysed by ultrasonication and repeated washing, inclusion bodies were extracted and dissolved using a high-strength denaturant. The monomer of rhBMP-7 was purified by ion-exchange chromatography, and the purity coefficient was approximately 96%. The protein was renatured with refolding buffers at different pH values. The renatured rhBMP-7 dimer protein in this study increased the alkaline phosphatase activity of NIH3T3 cells. This study may be helpful for the in vitro production and biomedical application of rhBMP-7 protein expressed in an E. coli expression system. 相似文献
19.
灰绿曲霉β-葡萄糖苷酶的分离及特性 总被引:1,自引:0,他引:1
目的:利用灰绿曲霉EU7-22发酵产纤维素酶,从中分离到β-葡萄糖苷酶,分析其理化特性,确定其最佳活性条件。方法:灰绿曲霉EU7-22发酵液离心后,上清液经硫酸铵沉淀、Phenyl 6 Fast Flow(highsub)疏水层析和Sephacryl S-200凝胶层析,获得纯化的β-葡萄糖苷酶。结果:纯酶的比活性为5.1 IU/mg,得率为13.89%。SDS-PAGE凝胶电泳分析表明该酶是单亚基蛋白,其分子量为56.2 kDa。在pH4.0~6.0范围内,β-葡萄糖苷酶具有较高的稳定性,该酶的最适酶促反应pH为5.0。当β-葡萄糖苷酶在温度低于60℃的缓冲液中温育1 h后,酶活损失不大,表现了较好的稳定性;当该酶在温度高于60℃的缓冲液中温育1 h后,酶活迅速丧失。β-葡萄糖苷酶在70℃时具有最大催化活性。结论:灰绿曲霉EU7-22发酵产生的β-葡萄糖苷酶具有较高活性,具有分子量较小、最佳催化温度较高的特点。 相似文献