首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hojin Kang 《Molecular simulation》2015,41(10-12):948-954
Phosphatidylglycerol (PG) is one of the important components of biological membranes, but there is a paucity of experimental data to test the accuracy of molecular dynamics (MD) simulations. This work consists of testing the accuracy of the CHARMM36 (C36) lipid force field on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) lipid bilayers. MD simulations of POPG lipid bilayers are compared to recently available X-ray and neutron scattering and deuterium NMR measurements. Overall, the C36 lipid force field accurately represents the X-ray and neutron form factors, bilayer and hydrocarbon thicknesses and chain deuterium order parameters. The surface area per lipid from MD simulations with C36 (67.7 ± 0.2 Å2) is in excellent agreement with the experimentally determined value of 66.0 ± 1.3 Å2. C36 outperforms the lipid force field developed by Berger et al. [15] and suggests that past studies with this force field may result in lateral areas that are too small. Moreover, our studies give some insight into the structural model used in experiments and suggest that the functional form for the head group may not be Gaussian-like. Based on our simulations, the POPG lipid in the C36 lipid force field is well parameterised and can be used for other PG lipids and membrane models with mixed lipids.  相似文献   

2.
Suárez D  Field MJ 《Proteins》2005,59(1):104-117
Herein, we present results from molecular dynamics (MD) simulations of the human butyrylcholinesterase (BuChE) enzyme in aqueous solution. Two configurations of the unbound form of BuChE differing in the presence or absence of a sodium ion inside the protein gorge were simulated for 10 and 5 ns, respectively. Besides complementing the structural information provided by X-ray data, the MD simulations give insight into the structure of the native BuChE enzyme. For example, it is shown that: the nucleophilic Ser(198) residue and the various binding subsites in the BuChE catalytic cavity are readily accessible from the exterior of the protein; the presence of the sodium ion dynamically explores two different binding sites in the gorge leading to the active site and stabilizes the productive conformation of the Glu(325)/His(438)/Ser(198) catalytic triad; several long-lived water bridges are fully integrated into the architecture of the active site; the positions of the residues at the rim of the gorge region display large deviations with respect to the crystal structure; and two side doors, constituted by residues situated at the tip of the acyl- and Omega-loops, respectively, open wide enough to allow the passage of water molecules. In conclusion, we compare our theoretical results with those from previous work on mouse acetylcholinesterase and discuss their implications for substrate binding and catalysis in BuChE.  相似文献   

3.
Nine nonnative conformations of ubiquitin, generated during two different thermal denaturation trajectories, were simulated under nearly native conditions (62 degrees C). The simulations included all protein and solvent atoms explicitly, and simulation times ranged from 1-2.4 ns. The starting structures had alpha-carbon root-mean-square deviations (RMSDs) from the crystal structure of 4-12 A and radii of gyration as high as 1.3 times that of the native state. In all but one case, the protein collapsed when the temperature was lowered and sampled conformations as compact as those reached in a control simulation beginning from the crystal structure. In contrast, the protein did not collapse when simulated in a 60% methanol:water mixture. The behavior of the protein depended on the starting structure: during simulation of the most native-like starting structures (<5 A RMSD to the crystal structure) the RMSD decreased, the number of native hydrogen bonds increased, and the secondary and tertiary structure increased. Intermediate starting structures (5-10 A RMSD) collapsed to the radius of gyration of the control simulation, hydrophobic residues were preferentially buried, and the protein acquired some native contacts. However, the protein did not refold. The least native starting structures (10-12 A RMSD) did not collapse as completely as the more native-like structures; instead, they experienced large fluctuations in radius of gyration and went through cycles of expansion and collapse, with improved burial of hydrophobic residues in successive collapsed states.  相似文献   

4.
Hughes SJ  Tanner JA  Miller AD  Gould IR 《Proteins》2006,62(3):649-662
We report molecular dynamics simulations of the Escherichia coli Lysyl-tRNA synthetase LysU isoform carried out as a benchmark for mutant simulations in in silico protein engineering efforts. Unlike previous studies of aminoacyl-tRNA synthetases, LysU is modelled in its full dimeric form with explicit solvent. While developing a suitable simulation protocol, we observed an asymmetry that persists despite improvements to the model. This prediction has directly led to experiments that establish a functional asymmetry in nucleotide binding by LysU. The development of a simulation protocol and validation of the model are presented here. The observed asymmetry is described and the role of protein flexibility in developing the asymmetry is discussed.  相似文献   

5.
6.
Rhomboid proteases can catalyze peptide bond cleavage and participate in abundant biological processes encompassing all branches of life; however, the pathway for substrate entry into its active site remains ambiguous. Here, the two possible pathways are preliminarily determined through molecular dynamics: One pathway is between Tm2 and Tm5, and the other is between Loop3 and Loop5. Then, the umbrella sampling simulations are performed to investigate the more feasible pathway for substrate entry. The results show that free energy barriers along the two pathways are similar; in the pathway 1, Trp236 and Trp157 as pivotal residues are responsible for the rotation of substrate in the binding process; in the pathway 2, among some important residues, the residue His150 plays an important role in substrate entry. Further, combining with previous experiment results, it is concluded that the substrate is inclined to enter into the active site along pathway 2. Our results are important for further understanding the function and catalysis mechanism of rhomboid proteases.

Communicated by Ramaswamy H. Sarma  相似文献   


7.
8.
Recent studies of DNA axis curvature and flexibility based on molecular dynamics (MD) simulations on DNA are reviewed. The MD simulations are on DNA sequences up to 25 base pairs in length, including explicit consideration of counterions and waters in the computational model. MD studies are described for ApA steps, A-tracts, for sequences of A-tracts with helix phasing. In MD modeling, ApA steps and A-tracts in aqueous solution are essentially straight, relatively rigid, and exhibit the characteristic features associated with the B'-form of DNA. The results of MD modeling of A-tract oligonucleotides are validated by close accord with corresponding crystal structure results and nuclear magnetic resonance (NMR) nuclear Overhauser effect (NOE) and residual dipolar coupling (RDC) structures of d(CGCGAATTCGCG) and d(GGCAAAAAACGG). MD simulation successfully accounts for enhanced axis curvature in a set of three sequences with phased A-tracts studied to date. The primary origin of the axis curvature in the MD model is found at those pyrimidine/purine YpR "flexible hinge points" in a high roll, open hinge conformational substate. In the MD model of axis curvature in a DNA sequence with both phased A-tracts and YpR steps, the A-tracts appear to act as positioning elements that make the helix phasing more precise, and key YpR steps in the open hinge state serve as curvature elements. Our simulations on a phased A-tract sequence as a function of temperature show that the MD simulations exhibit a premelting transition in close accord with experiment, and predict that the mechanism involves a B'-to-B transition within A-tracts coupled with the prediction of a transition in key YpR steps from the high roll, open hinge, to a low roll, closed hinge substate. Diverse experimental observations on DNA curvature phenomena are examined in light of the MD model with no serious discrepancies. The collected MD results provide independent support for the "non-A-tract model" of DNA curvature. The "junction model" is indicated to be a special case of the non-A-tract model when there is a Y base at the 5' end of an A-tract. In accord with crystallography, the "ApA wedge model" is not supported by MD.  相似文献   

9.
xDNA is a modified DNA, which contains natural as well as expanded bases. Expanded bases are generated by the addition of a benzene spacer to the natural bases. A set of AMBER force‐field parameters were derived for the expanded bases and the structural dynamics of the xDNA decamer ( xT5 ′ G xT A xC xG C xA xG T3′ ) · ( xA5′ C T xG C G xT A xC A3′) was explored using a 22 ns molecular dynamics simulation in explicit solvent. During the simulation, the duplex retained its Watson‐Crick base‐pairing and double helical structure, with deviations from the starting B‐form geometry towards A‐form; the deviations are mainly in the backbone torsion angles and in the helical parameters. The sugar pucker of the residues were distributed among a variety of modes; C2′ endo, C1′ exo, O4′ endo, C4′ exo, C2′ exo, and C3′ endo. The enhanced stacking interactions on account of the modification in the bases could help to retain the duplex nature of the helix with minor deviations from the ideal geometry. In our simulation, the xDNA showed a reduced minor groove width and an enlarged major groove width in comparison with the NMR structure. Both the grooves are larger than that of standard B‐DNA, but major groove width is larger than that of A‐DNA with almost equal minor groove width. The enlarged groove widths and the possibility of additional hydration in the grooves makes xDNA a potential molecule for various applications. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 351–360, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

10.
Molecular dynamics simulations were used to investigate the aggregation of two partially overlapped graphene sheets in hexane, dodecane and eicosane. When partially overlapped graphene sheets are adjacent to one another, they will expel the adsorbed layers of the solvent molecules on the graphene surface, and the amount of overlap will increase. When the overlapped regions of the graphene sheets are separated by solvent molecules, they cannot expel the adsorption layers between them, and so the sheets remain separated. The driving force for aggregation is the van der Waals interaction between the two graphene sheets, while the van der Waals interaction between the graphene sheets and the solvent molecules inhibits graphene aggregation. The diffusion rate of the hydrocarbon molecules with shorter chain lengths is higher. Thus, they diffuse faster during graphene aggregation, which leads to a higher rate of graphene overlapping in the shorter hydrocarbons. This work provides useful insights into graphene aggregation in linear hydrocarbon solvents of varying lengths at the nanoscale.  相似文献   

11.
The aminomethylpyrimidines were investigated as a novel class of DPP-IV inhibitors. In this Letter, the binding mechanisms of how slight change of substitution or position influences the binding affinity of five representative analogs was investigated by molecular dynamics simulation, free energy calculations and energy decomposition analysis. The conserved hydrogen bonds with Glu205 and Glu206 slightly favor the inhibitor binding; the van der Waals interactions, especially the two key contacts with Tyr547 and Tyr666, dominate in the binding free energy and play a crucial role on distinguishing the high active inhibitors from the low ones.  相似文献   

12.
3-Hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR) is generally regarded as targets for the treatment of hypercholesterolemia. HMGR inhibitors (more commonly known as statins) are discovered as plasma cholesterol lowering molecules. In this work, 120 atorvastatin analogues were studied using a combination of molecular modeling techniques including three-dimensional quantitative structure–activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulation. The results show that the best CoMFA (comparative molecular field analysis) model has q2 = 0.558 and r2 = 0.977, and the best CoMSIA (comparative molecular similarity indices analysis) model has q2 = 0.582 and r2 = 0.919. Molecular docking and MD simulation explored the binding relationship of the ligand and the receptor protein. The calculation results indicated that the hydrophobic and electrostatic fields play key roles in QSAR model. After MD simulation, we found four vital residues (Lys735, Arg590, Asp690 and Asn686) and three hydrophobic regions in HMGR binding site. The calculation results show that atorvastatin analogues obtained by introduction of F atoms or gem-difluoro groups could obviously improve the inhibitory activity. The new HMGR inhibitor analogues design in this Letter had been submitted which is being currently synthesized by our laboratories.  相似文献   

13.
Molecular dynamics (MD) simulations provide a valuable approach to the dynamics, structure, and stability of membrane-protein systems. Coarse-grained (CG) models, in which small groups of atoms are treated as single particles, enable extended (>100 ns) timescales to be addressed. In this study, we explore how CG-MD methods that have been developed for detergents and lipids may be extended to membrane proteins. In particular, CG-MD simulations of a number of membrane peptides and proteins are used to characterize their interactions with lipid bilayers. CG-MD is used to simulate the insertion of synthetic model membrane peptides (WALPs and LS3) into a lipid (PC) bilayer. WALP peptides insert in a transmembrane orientation, whilst the LS3 peptide adopts an interfacial location, both in agreement with experimental biophysical data. This approach is extended to a transmembrane fragment of the Vpu protein from HIV-1, and to the coat protein from fd phage. Again, simulated protein/membrane interactions are in good agreement with solid state NMR data for these proteins. CG-MD has also been applied to an M3-M4 fragment from the CFTR protein. Simulations of CFTR M3-M4 in a detergent micelle reveal formation of an alpha-helical hairpin, consistent with a variety of biophysical data. In an I231D mutant, the M3-M4 hairpin is additionally stabilized via an inter-helix Q207/D231 interaction. Finally, CG-MD simulations are extended to a more complex membrane protein, the bacterial sugar transporter LacY. Comparison of a 200 ns CG-MD simulation of LacY in a DPPC bilayer with a 50 ns atomistic simulation of the same protein in a DMPC bilayer shows that the two methods yield comparable predictions of lipid-protein interactions. Taken together, these results demonstrate the utility of CG-MD simulations for studies of membrane/protein interactions.  相似文献   

14.
Molecular dynamics effects on protein electrostatics   总被引:4,自引:0,他引:4  
Electrostatic calculations have been carried out on a number of structural conformers of tuna cytochrome c. Conformers were generated using molecular dynamics simulations with a range of solvent simulating, macroscopic dielectric formalisms, and one solvent model that explicitly included solvent water molecules. Structures generated using the lowest dielectric models were relatively tight, with side chains collapsed on the surface, while those from the higher dielectric models had more internal and external fluidity, with surface side chains exploring a fuller range of conformational space. The average structure generated with the explicitly solvated model corresponded most closely with the crystal structure. Individual pK values, overall titration curves, and electrostatic potential surfaces were calculated for average structures and structures along each simulation. Differences between structural conformers within each simulation give rise to substantial changes in calculated local electrostatic interactions, resulting in pK value fluctuations for individual sites in the protein that vary by 0.3-2.0 pK units from the calculated time average. These variations are due to the thermal side chain reorientations that produce fluctuations in charge site separations. Properties like overall titration curves and pH dependent stability are not as sensitive to side chain fluctuations within a simulation, but there are substantial effects between simulations due to marked differences in average side chain behavior. These findings underscore the importance of proper dielectric formalism in molecular dynamics simulations when used to generate alternate solution structures from a crystal structure, and suggest that conformers significantly removed from the average structure have altered electrostatic properties that may prove important in episodic protein properties such as catalysis.  相似文献   

15.
Molecular dynamics simulations are used to investigate dynamics and intramolecular interactions of the HIV-1 transactivator (Tat) in aqueous solution. The calculations are based on the AMBER force field with particle mesh Ewald treatment for long-range electrostatics. The Tat structure exhibits a large flexibility, consistent with its absence of secondary structure elements. From an analysis of the correlation matrix and of electrostatic interactions we suggest that segments expressed by the two exons (amino acids 1-72 and 73-86, respectively) exhibit rather separated dynamic and energetic properties. We also identify intramolecular interactions of importance for structure stabilization. In particular, significant electrostatic interactions are recognized between the N-terminus and the basic domain of the protein, consistent with site-directed mutagenesis performed in this work.  相似文献   

16.
Singh N  Briggs JM 《Biopolymers》2008,89(12):1104-1113
Protein flexibility and conformational diversity is well known to be a key characteristic of the function of many proteins. Human blood coagulation proteins have multiple substrates, and various protein-protein interactions are required for the smooth functioning of the coagulation cascade to maintain blood hemostasis. To address how a protein may cope with multiple interactions with its structurally diverse substrates and the accompanied structural changes that may drive these changes, we studied human Factor X. We employed 20 ns of molecular dynamics (MD) and steered molecular dynamics (SMD) simulations on two different conformational forms of Factor X, open and closed, and observed an interchangeable conformational transition from one to another. This work also demonstrates the roles of various aromatic residues involved in aromatic-aromatic interactions, which make this dynamic transition possible.  相似文献   

17.
Synthetic scaffolds containing collagen (Type I) are of increasing interest for bone tissue engineering, especially for highly porous biomaterials in combination with glycosaminoglycans. In experiments the integration of heparin during the fibrillogenesis resulted in different types of collagen fibrils, but models for this aggregation on a molecular scale were only tentative. We conducted molecular dynamic simulations investigating the binding of heparin to collagen and the influence of the telopeptides during collagen aggregation. This aims at explaining experimental findings on a molecular level. Novel structures for N‐ and C‐telopeptides were developed with the TIGER2 replica exchange algorithm and dihedral principle component analysis. We present an extended statistical analysis of the mainly electrostatic interaction between heparin and collagen and identify several binding sites. Finally, we propose a molecular mechanism for the influence of glycosaminoglycans on the morphology of collagen fibrils. Proteins 2017; 85:1119–1130. © 2017 Wiley Periodicals, Inc.  相似文献   

18.
Molecular dynamics simulations of glycoclusters and glycodendrimers   总被引:1,自引:0,他引:1  
Protein-carbohydrate recognition plays a crucial role in a wide range of biological processes, required both for normal physiological functions and the onset of disease. Nature uses multivalency in carbohydrate-protein interactions as a strategy to overcome the low affinity found for singular binding of an individual saccharide epitope to a single carbohydrate recognition domain of a lectin. To mimic the complex multi-branched oligosaccharides found in glycoconjugates, which form the structural basis of multivalent carbohydrate-protein interactions, so-called glycoclusters and glycodendrimers have been designed to serve as high-affinity ligands of the respective receptor proteins. To allow a rational design of glycodendrimer-type molecules with regard to the receptor structures involved in carbohydrate recognition, a deeper knowledge of the dynamics of such molecules is desirable. Most glycodendrimers have to be considered highly flexible molecules with their conformational preferences most difficult to elucidate by experimental methods. Longtime molecular dynamics (MD) simulations with inclusion of explicit solvent molecules are suited to explore the conformational space accessible to glycodendrimers. Here, a detailed geometric and conformational analysis of 15 glycodendrimers and glycoclusters has been accomplished, which differ with regard to their core moieties, spacer characteristics and the type of terminal carbohydrate units. It is shown that the accessible conformational space depends strongly on the structural features of the core and spacer moieties and even on the type of terminating sugars. The obtained knowledge about possible spatial distributions of the sugar epitopes exposed on the investigated hyperbranched neoglycoconjugates is detailed for all examples and forms important information for the interpretation and prediction of affinity data, which can be deduced from biological testing of these multivalent neoglycoconjugates.  相似文献   

19.
Membrane proteins control the traffic across cell membranes and thereby play an essential role in cell function from transport of various solutes to immune response via molecular recognition. Because it is very difficult to determine the structures of membrane proteins experimentally, computational methods have been increasingly used to study their structure and function. Here we focus on two classes of membrane proteins—ion channels and transporters—which are responsible for the generation of action potentials in nerves, muscles, and other excitable cells. We describe how computational methods have been used to construct models for these proteins and to study the transport mechanism. The main computational tool is the molecular dynamics (MD) simulation, which can be used for everything from refinement of protein structures to free energy calculations of transport processes. We illustrate with specific examples from gramicidin and potassium channels and aspartate transporters how the function of these membrane proteins can be investigated using MD simulations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号