首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Analysis of proteins commonly requires the partition of their structure into regions such as the surface, interior, or interface. Despite the frequent use of such categorization, no consensus definition seems to exist. This study thus aims at providing a definition that is general, is simple to implement, and yields new biological insights. This analysis relies on 397, 196, and 701 protein structures from Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens, respectively, and the conclusions are consistent across all three species. A threshold of 25% relative accessible surface area best segregates amino acids at the interior and at the surface. This value is further used to extend the core-rim model of protein-protein interfaces and to introduce a third region called support. Interface core, rim, and support regions contain similar numbers of residues on average, but core residues contribute over two-thirds of the contact surface. The amino acid composition of each region remains similar across different organisms and interface types. The interface core composition is intermediate between the surface and the interior, but the compositions of the support and the rim are virtually identical with those of the interior and the surface, respectively. The support and rim could thus “preexist” in proteins, and evolving a new interaction could require mutations to form an interface core only. Using the interface regions defined, it is shown through simulations that only two substitutions are necessary to shift the average composition of a  1000-Å2 surface patch involving ∼ 28 residues to that of an equivalent interface. This analysis and conclusions will help understand the notion of promiscuity in protein-protein interaction networks.  相似文献   

2.
3.
Studies of the structural basis of protein thermostability have produced a confusing picture. Small sets of proteins have been analyzed from a variety of thermophilic species, suggesting different structural features as responsible for protein thermostability. Taking advantage of the recent advances in structural genomics, we have compiled a relatively large protein structure dataset, which was constructed very carefully and selectively; that is, the dataset contains only experimentally determined structures of proteins from one specific organism, the hyperthermophilic bacterium Thermotoga maritima, and those of close homologs from mesophilic bacteria. In contrast to the conclusions of previous studies, our analyses show that oligomerization order, hydrogen bonds, and secondary structure play minor roles in adaptation to hyperthermophily in bacteria. On the other hand, the data exhibit very significant increases in the density of salt-bridges and in compactness for proteins from T.maritima. The latter effect can be measured by contact order or solvent accessibility, and network analysis shows a specific increase in highly connected residues in this thermophile. These features account for changes in 96% of the protein pairs studied. Our results provide a clear picture of protein thermostability in one species, and a framework for future studies of thermal adaptation.  相似文献   

4.
Dor O  Zhou Y 《Proteins》2007,66(4):838-845
An integrated system of neural networks, called SPINE, is established and optimized for predicting structural properties of proteins. SPINE is applied to three-state secondary-structure and residue-solvent-accessibility (RSA) prediction in this paper. The integrated neural networks are carefully trained with a large dataset of 2640 chains, sequence profiles generated from multiple sequence alignment, representative amino acid properties, a slow learning rate, overfitting protection, and an optimized sliding-widow size. More than 200,000 weights in SPINE are optimized by maximizing the accuracy measured by Q(3) (the percentage of correctly classified residues). SPINE yields a 10-fold cross-validated accuracy of 79.5% (80.0% for chains of length between 50 and 300) in secondary-structure prediction after one-month (CPU time) training on 22 processors. An accuracy of 87.5% is achieved for exposed residues (RSA >95%). The latter approaches the theoretical upper limit of 88-90% accuracy in assigning secondary structures. An accuracy of 73% for three-state solvent-accessibility prediction (25%/75% cutoff) and 79.3% for two-state prediction (25% cutoff) is also obtained.  相似文献   

5.
6.
We propose here to give an overview of gases and liquids adsorption in the materials of Institute Lavoisier (MIL)-101(Cr), MIL-53(Cr) and silica materials. We present some recent results of systems of interests such as the H2 adsorption in MIL-101(Cr) and CO2 and H2S adsorption in the MIL-53(Cr) material. In addition, we will examine the sensitivity in water force field for water adsorption in hydrophilic and hydrophobic silica nanopores and we evaluate the Gay–Berne liquid crystal adsorption in the smooth and rough pores.  相似文献   

7.
8.
A novel LAGLIDADG-type homing endonuclease (HEase), I-Tsp061I, from the hyperthermophilic archaeon Thermoproteus sp. IC-061 16 S rRNA gene (rDNA) intron was characterized with respect to its structure, catalytic properties and thermostability. It was found that I-Tsp061I is a HEase isoschizomer of the previously described I-PogI and exhibits the highest thermostability among the known LAGLIDADG-type HEases. Determination of the crystal structure of I-Tsp061I at 2.1 A resolution using the multiple isomorphous replacement and anomalous scattering method revealed that the overall fold is similar to that of other known LAGLIDADG-type HEases, despite little sequence similarity between I-Tsp061I and those HEases. However, I-Tsp061I contains important cross-domain polar networks, unlike its mesophilic counterparts. Notably, the polar network Tyr6-Asp104-His180-107O-HOH12-104O-Asn177 exists across the two packed alpha-helices containing both the LAGLIDADG catalytic motif and the GxxxG hydrophobic helix bundle motif. Another important structural feature is the salt-bridge network Asp29-Arg31-Glu182 across N and C-terminal domain interface, which appears to contribute to the stability of the domain/domain packing. On the basis of these structural analyses and extensive mutational studies, we conclude that such cross-domain polar networks play key roles in stabilizing the catalytic center and domain packing, and underlie the hyperthermostability of I-Tsp061I.  相似文献   

9.
We describe an algorithm to compute native structures of proteins from their primary sequences. The novel aspects of this method are: 1) The hydrophobic potential was set to be proportional to the nonpolar solvent accessible surface. To make computation feasible, we developed a new algorithm to compute the solvent accessible surface areas rapidly. 2) The supersecondary structures of each protein were predicted and used as restraints during the conformation searching processes. This algorithm was applied to five proteins. The overall fold of these proteins can be computed from their sequences, with deviations from crystal structures of 1.48–4.48 Å for Cα atoms. Proteins 31:247–257, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Molecular simulations are used to study the adsorption of benzene at 300?K in atomistic models of disordered nanoporous carbons. These models, named as CS400, CS1000 and CS1000a, differ in density and chemical compositions, and reproduce the morphological and topological features present in real nanoporous carbons. We found that the adsorption phenomena depend upon the local structure of nanoporous carbons. To understand the effect of surface chemistry on adsorption and structure of confined benzene, functional groups (–COOH and –C=O) were added to these models. The presence of functional groups led to the onset of adsorption process at a low pressure. The carboxyl groups (–COOH) have a greater impact on adsorption as compared to carbonyl (–C=O) groups. The CS1000a models have wide micropores and thus it exhibits a jump in adsorption isotherm. The jump shifts towards lower pressure on the addition of functional groups, with –COOH groups showing a larger shift. The presence of functional groups also increases the isosteric heat of adsorption, with –COOH groups showing higher values. The coulombic contribution to total fluid–wall interaction energy is higher for –COOH functional groups and decreases on increasing pressure. Benzene confined in CS1000a models exhibit a liquid-like structure.  相似文献   

11.
In order to rationalize the physicochemical properties of human serum-transferrin (STf) and the STf-receptor (TfR) recognition process, we have tried to predict the 3D structures of apo- and iron-loaded STf using a homology modeling technique to study the changes in the structural characteristics that take place upon the uptake of iron by STf in solution. The crystal structures of both forms for ovotransferrin were used as templates for the STf modeling. The modeled structure of STf gave a satisfactory interpretation for the typical physicochemical properties such that (1) STf has a negative electrophoretic mobility and its value increases with iron uptake, and (2) the radius of gyration Rg of Tf decreases with iron uptake. It was found that upon iron binding, interdomain closures take place with large movements of the NII and CII subdomains comprising the N- and C-lobes in STf through a hinge-bending motion, accompanied by the opening of the bridge region with a displacement of more than 15 Å. Moreover, in view of the findings from our capillary electrophoresis experiments that the electrostatic interactions significantly contribute to a specific binding of Fe2-STf with TfR, it is inferred that the connecting (bridge) and its neighboring region associated with a surface exposure of negative charge play an important role in the STf-receptor recognition process.  相似文献   

12.
Particle size associated with accessible surface area has a significant impact on the saccharification of plant cell walls by cellulolytic enzymes. Small particle sizes of untreated cellulosic substrate are more readily hydrolyzed than large ones because of higher specific surface area. Pretreatment enlarges accessible and susceptible surface area leading to enhanced cellulose hydrolysis. These hypotheses were tested using ground corn stover in the size ranges of 425-710 and 53-75 microm. Ultrastructural changes in these particles were imaged after treatment with cellulolytic enzymes before and after liquid hot water pretreatment. The smaller 53-75 microm corn stover particles are 1.5x more susceptible to hydrolysis than 425-710 microm corn stover particles. This difference between the two particle size ranges is eliminated when the stover is pretreated with liquid hot water pretreatment at 190 degrees C for 15 min, at pH between 4.3 and 6.2. This pretreatment causes ultrastructural changes and formation of micron-sized pores that make the cellulose more accessible to hydrolytic enzymes.  相似文献   

13.
Chaotropic agents are cosolutes that can disrupt the hydrogen bonding network between water molecules and reduce the stability of the native state of proteins by weakening the hydrophobic effect. In this work, we represent the chaotropic agent as a factor that reduces the amount of order in the structures formed by water molecules, both in the bulk and the hydration shells around hydrophobic amino acids. In this framework we show that low chaotrope concentrations lead to a destabilization of the native state of proteins, and that high concentrations induce complete denaturation. We also find that the reduction of the number of bulk ordered states of water molecules can give origin to an effective interaction between chaotropic molecules and proteins.  相似文献   

14.
15.
In general, transferases undergo large structural changes and sequester substrate molecules, to shield them from water. By contrast, hydrolases exhibit only small structural changes, and expose substrate molecules to water. However, some hydrolases deeply bury their substrates within the proteins. To clarify the relationship between substrate‐shielding and enzymatic functions, we investigated 70 representative hydrolase structures, and examined the relative accessible surface areas of their substrates. As compared to the hydrolases employing the single displacement reaction, the hydrolases employing the double displacement reaction bury the substrate within the proteins. The exo hydrolases display significantly more substrate‐shielding from water than the endo hydrolases. It suggests that the substrate‐shielding is related to the chemical reaction mechanism of the hydrolases and the substrate specificity. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Structure–dynamics interrelationships are important in understanding protein function. We have explored the empirical relationship between rotational correlation times (c and the solvent accessible surface areas (SASA) of 75 proteins with known structures. The theoretical correlation between SASA and c through the equation SASA = Krc (2/3) is also considered. SASA was determined from the structure, c calc was determined from diffusion tensor calculations, and c expt was determined from NMR backbone13 C or 15N relaxation rate measurements. The theoretical and experimental values of c correlate with SASA with regression analyses values of Kr as 1696 and 1896 m2s-(2/3), respectively, and with corresponding correlation coefficients of 0.92 and 0.70.  相似文献   

17.
The effect of temperature on the adsorption of a simple mixture (Ar/Kr) in disordered porous materials is investigated by means of molecular simulation. In the larger mesopores of porous silica glasses, capillary condensation occurs upon decreasing the temperature. At temperatures above the capillary condensation temperature, Kr is preferentially adsorbed at the pore surface and Ar adsorption occurs in regions of low Kr density. For temperatures below the capillary condensation temperature, Ar density surprisingly increases as temperature increases, the behaviour that is consistent with an over-solubility effect. In contrast, in the disordered sub-nanoporous carbon, filling of the pores occurs in a reversible and continuous way upon decreasing the temperature, owing to the small size and amorphous shape of the pores. These results show that the crossover between capillary condensation and continuous reversible filling observed for pure fluids in pores also exists for mixtures. We also show that the Kr selectivity exhibits a minimum in the disordered porous silica that is located at the capillary condensation temperature. In contrast, in the disordered porous carbon where no capillary condensation occurs, the selectivity decreases monotonically with increasing the temperature. These results shed light on low-temperature adsorption of mixtures confined in porous materials and provide a guide to design efficient phase separation processes.  相似文献   

18.
From small angle X-ray diffraction for the stratum corneum of hairless mouse, it was obtained that in the normal stratum corneum, the 1st, 2nd and 3rd order diffraction peaks for the intercellular lipid lamellar structure appear at 13.8, 6.87 and 4.59 nm, respectively and also a broad hump for the 4th order reflection appears as observed by the previous researchers. In the damaged stratum corneum prepared by the treatment of sodium dodecyl sulfate, these small-angle diffraction peaks disappear and only the broad maxima remain around the 1st, 2nd and 3rd order diffraction peaks. These facts indicate that in the normal stratum the lamellar structure is ordered and in the damaged stratum corneum the lamellar structure is disordered. Furthermore, in the reconstituted lamellar structure obtained by immersing into the dilute suspension of the mixture of ceramide 3, cholesterol and stearic acid, the 1st, 2nd and 3rd order diffraction peaks reappear at 13.3, 6.67 and 4.44 nm, respectively. This fact indicates that the reorganization of the ordered lamellar structure takes place by adding the mixture to the damaged stratum corneum.  相似文献   

19.
Recent advances in the computation of free energies have facilitated the understanding of host—guest and protein—ligand recognition. Rigorous perturbation methods have been assessed and expanded, and more approximate techniques have been developed that allow faster treatment of diverse systems.  相似文献   

20.
Osmolytes are small organic molecules accumulated by cells in response to osmotic stress. Although their effects on protein stability have been studied, there has been no systematic documentation of their influence on RNA. Here, the effects of nine osmolytes on the secondary and tertiary structure stabilities of six RNA structures of differing complexity and stability have been surveyed. Using thermal melting analysis, m-values (change in ΔG° of RNA folding per molal concentration of osmolyte) have been measured. All the osmolytes destabilize RNA secondary structure, although to different extents, probably because they favor solubilization of base surfaces. Osmolyte effects on tertiary structure, however, can be either stabilizing or destabilizing. We hypothesize that the stabilizing osmolytes have unfavorable interactions with the RNA backbone, which becomes less accessible to solvent in most tertiary structures. Finally, it was found that as a larger fraction of the negative charge of an RNA tertiary structure is neutralized by hydrated Mg2+, the RNA becomes less responsive to stabilizing osmolytes and may even be destabilized. The natural selection of osmolytes as protective agents must have been influenced by their effects on the stabilities of functional RNA structures, though in general, the effects of osmolytes on RNA and protein stabilities do not parallel each other. Our results also suggest that some osmolytes can be useful tools for studying intrinsically unstable RNA folds and assessing the mechanisms of Mg2+-induced RNA stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号