首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion interactions with nucleic acids (both DNA and RNA) are an important and evolving field of investigation. Positively charged cations may interact with highly negatively charged nucleic acids via simple electrostatic interactions to help screen the electrostatic repulsion along the nucleic acids and assist their folding and/or compaction. Cations may also bind at specific sites and become integral parts of the structures, possibly playing important enzymatic roles. Two popular methods for computationally exploring a nucleic acid’s ion atmosphere are atomistic molecular dynamics (MD) simulations and the Poisson–Boltzmann (PB) equation. In general, monovalent ion results obtained from MD simulations and the PB equation agree well with experiment. However, Bai et al. (2007) observed discrepancies between experiment and the PB equation while examining the competitive binding of monovalent and divalent ions, with more significant discrepancies for divalent ions. The goal of this project was to thoroughly investigate monovalent (Na+) and divalent (Mg2+) ion distributions formed around a DNA duplex with MD simulations and the PB equation. We simulated three different cation concentrations, and matched the equilibrated bulk ion concentration for our theoretical calculations with the PB equation. Based on previous work, our Mg2+ ions were fully solvated, the expected state of Mg2+ ions when interacting with a duplex, when the production simulations began and remained throughout the simulations (Kirmizialtin, 2010; Robbins, 2012). Na+ ion distributions and number of Na+ ions within 10?Å of the DNA obtained from our two methods agreed well. However, results differed for Mg2+ ions, with a lower number of ions within the cut-off distance obtained from the PB equation when compared to MD simulations. The Mg2+ ion distributions around the DNA obtained via the two methods also differed. Based on our results, we conclude that the PB equation will systematically underestimate Mg2+ ions bound to DNA, and much of this deviation is attributed to dielectric saturation associated with high valency ions.  相似文献   

2.
The distributions of different cations around A-RNA are computed by Poisson-Boltzmann (PB) equation and replica exchange molecular dynamics (MD). Both the nonlinear PB and size-modified PB theories are considered. The number of ions bound to A-RNA, which can be measured experimentally, is well reproduced in all methods. On the other hand, the radial ion distribution profiles show differences between MD and PB. We showed that PB results are sensitive to ion size and functional form of the solvent dielectric region but not the solvent dielectric boundary definition. Size-modified PB agrees with replica exchange molecular dynamics much better than nonlinear PB when the ion sizes are chosen from atomistic simulations. The distribution of ions 14 Å away from the RNA central axis are reasonably well reproduced by size-modified PB for all ion types with a uniform solvent dielectric model and a sharp dielectric boundary between solvent and RNA. However, this model does not agree with MD for shorter distances from the A-RNA. A distance-dependent solvent dielectric function proposed by another research group improves the agreement for sodium and strontium ions, even for shorter distances from the A-RNA. However, Mg2+ distributions are still at significant variances for shorter distances.  相似文献   

3.
The electrostatic potential and component dielectric constants from molecular dynamics (MD) trajectories of tuftsin, a tetrapeptide with the amino acid sequence Thr–Lys–Pro–Arg in water and in saline solution are presented. The results obtained from the analysis of the MD trajectories for the total electrostatic potential at points on a grid using the Ewald technique are compared with the solution to the Poisson–Boltzmann (PB) equation. The latter was solved using several sets of dielectric constant parameters. The effects of structural averaging on the PB results were also considered. Solute conformational mobility in simulations gives rise to an electrostatic potential map around the solute dominated by the solute monopole (or lowest order multipole). The detailed spatial variation of the electrostatic potential on the molecular surface brought about by the compounded effects of the distribution of water and ions close to the peptide, solvent mobility, and solute conformational mobility are not qualitatively reproducible from a reparametrization of the input solute and solvent dielectric constants to the PB equation for a single structure or for structurally averaged PB calculations. Nevertheless, by fitting the PB to the MD electrostatic potential surfaces with the dielectric constants as fitting parameters, we found that the values that give the best fit are the values calculated from the MD trajectories. Implications of using such field calculations on the design of tuftsin peptide analogues are discussed. © 1999 John Wiley & Sons, Inc. Biopoly 50: 133–143, 1999  相似文献   

4.
Abstract

We present an ab initio molecular dynamics (MD) method for simple liquid metals based on the quantal hypernetted-chain (QHNC) theory derived from exact expressions for radial distribution functions (RDF's) of the electron-ion model for liquid metals. In our method based on the QHNC equations, the classical MD is performed repeatedly to determine a self-consistent effective interionic potential, which depends on the ion-ion RDF of the system. This resultant effective ionic potential is obtained to be consistent with the density distribution of a pseudoatom and the electron-ion RDF, as well as the ion-ion RDF and the ion-ion bridge function, which are determined exactly as a result of the repeated MD simulation. We have applied this QHNC-MD method for Li, Na, K, Rb, and Cs near the melting temperature using upto 16,000 particles for the MD simulation. It is found that the convergence of the effective interionic potential is fast enough for practical applications; typically two MD runs are enough for convergence of the effective ionic potential within accuracy of 3 to 4 digits. Furthermore the resultant static structure factor is in excellent agreement with experimental data of X-ray and/or neutron scatering.  相似文献   

5.
Molecular dynamics (MD) methods for calculating the melting point of complex molecular and ionic solids and nanoparticles are described. Various approaches for simulating melting and computing the thermodynamic melting point are discussed along with some force fields that have been used in simulations of the melting of molecular and ionic solids. The different structural, energetic and dynamical quantities used to characterize the melting transition are described. The article ends with a discussion of selected examples of melting point calculations of bulk solids and nanoparticles. Pointers on how each method can be implemented in DL_POLY are given.  相似文献   

6.
Abstract

The predictions of currently available theories for treating DNA-diffuse ionic cloud free energy contributions to conformational stability have been tested against experimental data for salt induced B-Z and B-A transitions. The theories considered are (i) Manning's counterion condensation approach (CC), (ii) the idealized Poisson-Boltzmann approximation (PB), and (iii) the potentials of mean force (PMF) approach proposed by Soumpasis. As far as we can judge from comparison with the set of experimental data currently available, it is found that only the latter theory yields satisfactory quantitative results for the dependence of the B-Z and B-A relative stabilities on monovalent salt concentration. The correct application of the PB and CC theories does not yield very low salt Z-B transitions, in contradiction to earlier assertions. At low salt concentrations the PB theory is qualitatively correct in predicting that the B form is electrostatically more favorable than both the A and B forms, whereas the CC theory is qualitatively wrong predicting that Z-DNA is more stable than both B and A DNA.  相似文献   

7.
The predictions of currently available theories for treating DNA-diffuse ionic cloud free energy contributions to conformational stability have been tested against experimental data for salt induced B-Z and B-A transitions. The theories considered are (i) Manning's counterion condensation approach (CC), (ii) the idealized Poisson-Boltzmann approximation (PB), and (iii) the potentials of mean force (PMF) approach proposed by Soumpasis. As far as we can judge from comparison with the set of experimental data currently available, it is found that only the latter theory yields satisfactory quantitative results for the dependence of the B-Z and B-A relative stabilities on monovalent salt concentration. The correct application of the PB and CC theories does not yield very low salt Z-B transitions, in contradiction to earlier assertions. At low salt concentrations the PB theory is qualitatively correct in predicting that the B form is electrostatically more favorable than both the A and Z forms, whereas the CC theory is qualitatively wrong predicting that Z-DNA is more stable than both B and A DNA.  相似文献   

8.
9.
Interaction energy with sulphur compounds and free volume in imidazolium-based ionic liquid were calculated by molecular dynamics (MD) simulations to examine their effects on desulphurisation. From microstructure analysis and energy contribution calculation, it is found that an increasing fractional free volume in ionic liquid and an enhancement of interaction with solute by tuning the structure of ionic liquid or oxidising sulphur compounds are favourable for desulphurisation, which allows more efficient packing of sulphur compounds in ionic liquids and more easily extraction of sulphur compounds from fuel. The MD results are in good agreement with experimental desulphurisation performance.  相似文献   

10.
A Suzuki  M Yamazaki  T Ito 《Biochemistry》1989,28(15):6513-6518
A high molecular weight inert molecule, poly(ethylene glycol) (PEG), or a soluble protein, ovalbumin, causes parallel bundles of actin filaments in a crystalline-like structure under physiological conditions of ionic compositions and pH. The bundle formation depends on the molecular weight of PEG, and a larger molecular weight of PEG can make the bundle at a lower concentration. Actin bundle formation has a discrete dependence on the concentration of PEG. The light scattering following PEG-induced bundle formation increased abruptly at 4.5% (w/w) PEG 6000, while at concentrations less than or equal to 4.0% (w/w) no increase was observed. Labeling actin filaments with heavy meromyosin indicated that the polarity of the filament in the bundle is random. The PEG-induced bundle formation depends on the ionic strength of the solutions and also the concentration of the filament, showing that a higher concentration of PEG was required at lower ionic strength or a lower concentration of the filament. The results described above cannot be explained on the basis of the postulation that the direct binding of PEG molecules to the actin filaments may cause bundle formation. Alternatively, the mechanism can be explained reasonably by the theory of osmoelastic coupling based on preferential exclusion of PEG molecules from the filament surface. High molecular weight molecules such as PEG should be preferentially excluded from the region adjacent to the actin filaments (exclusion layer) by steric hindrance, thereby making imbalance of osmolarity between the bulk and the exclusion layer. This imbalance puts an osmotic stress on the actin filament.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The ion atmosphere created by monovalent (Na+) or divalent (Mg2+) cations surrounding a B‐form DNA duplex were examined using atomistic molecular dynamics (MD) simulations and the nonlinear Poisson‐Boltzmann (PB) equation. The ion distributions predicted by the two methods were compared using plots of radial and two‐dimensional cation concentrations and by calculating the total number of cations and net solution charge surrounding the DNA. Na+ ion distributions near the DNA were more diffuse in PB calculations than in corresponding MD simulations, with PB calculations predicting lower concentrations near DNA groove sites and phosphate groups and a higher concentration in the region between these locations. Other than this difference, the Na+ distributions generated by the two methods largely agreed, as both predicted similar locations of high Na+ concentration and nearly identical values of the number of cations and the net solution charge at all distances from the DNA. In contrast, there was greater disagreement between the two methods for Mg2+ cation concentration profiles, as both the locations and magnitudes of peaks in Mg2+ concentration were different. Despite experimental and simulation observations that Mg2+ typically maintains its first solvation shell when interacting with nucleic acids, modeling Mg2+ as an unsolvated ion during PB calculations improved the agreement of the Mg2+ ion atmosphere predicted by the two methods and allowed for values of the number of bound ions and net solution charge surrounding the DNA from PB calculations that approached the values observed in MD simulations. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 834–848, 2014.  相似文献   

12.
Motivated by experiments in which an applied electric field translocates polynucleotides through an α-hemolysin protein channel causing ionic current transient blockade, a hybrid simulation model is proposed to predict the conductance properties of the open channel. Time scales corresponding to ion permeation processes are reached using the Poisson–Nernst–Planck (PNP) electro-diffusion model in which both solvent and local ion concentrations are represented as a continuum. The diffusion coefficients of the ions (K+ and Cl?) input in the PNP model are, however, calculated from all-atom molecular dynamics (MD). In the MD simulations, a reduced representation of the channel is used. The channel is solvated in a 1?M KCl solution, and an external electric field is applied. The pore specific diffusion coefficients for both ionic species are reduced 5–7 times in comparison to bulk values. Significant statistical variations (17–45%) of the pore-ions diffusivities are observed. Within the statistics, the ionic diffusivities remain invariable for a range of external applied voltages between 30 and 240?mV. In the 2D-PNP calculations, the pore stem is approximated by a smooth cylinder of radius ~9?Å with two constriction blocks where the radius is reduced to ~6?Å. The electrostatic potential includes the contribution from the atomistic charges. The MD-PNP model shows that the atomic charges are responsible for the rectifying behaviour and for the slight anion selectivity of the α-hemolysin pore. Independent of the hierarchy between the anion and cation diffusivities, the anionic contribution to the total ionic current will dominate. The predictions of the MD-PNP model are in good agreement with experimental data and give confidence in the present approach of bridging time scales by combining a microscopic and macroscopic model.  相似文献   

13.
The ionic atmosphere around nucleic acids remains only partially understood at atomic-level detail. Ion counting (IC) experiments provide a quantitative measure of the ionic atmosphere around nucleic acids and, as such, are a natural route for testing quantitative theoretical approaches. In this article, we replicate IC experiments involving duplex DNA in NaCl(aq) using molecular dynamics (MD) simulation, the three-dimensional reference interaction site model (3D-RISM), and nonlinear Poisson-Boltzmann (NLPB) calculations and test against recent buffer-equilibration atomic emission spectroscopy measurements. Further, we outline the statistical mechanical basis for interpreting IC experiments and clarify the use of specific concentration scales. Near physiological concentrations, MD simulation and 3D-RISM estimates are close to experimental results, but at higher concentrations (>0.7 M), both methods underestimate the number of condensed cations and overestimate the number of excluded anions. The effect of DNA charge on ion and water atmosphere extends 20–25 Å from its surface, yielding layered density profiles. Overall, ion distributions from 3D-RISMs are relatively close to those from corresponding MD simulations, but with less Na+ binding in grooves and tighter binding to phosphates. NLPB calculations, on the other hand, systematically underestimate the number of condensed cations at almost all concentrations and yield nearly structureless ion distributions that are qualitatively distinct from those generated by both MD simulation and 3D-RISM. These results suggest that MD simulation and 3D-RISM may be further developed to provide quantitative insight into the characterization of the ion atmosphere around nucleic acids and their effect on structure and stability.  相似文献   

14.
The ionic atmosphere around nucleic acids remains only partially understood at atomic-level detail. Ion counting (IC) experiments provide a quantitative measure of the ionic atmosphere around nucleic acids and, as such, are a natural route for testing quantitative theoretical approaches. In this article, we replicate IC experiments involving duplex DNA in NaCl(aq) using molecular dynamics (MD) simulation, the three-dimensional reference interaction site model (3D-RISM), and nonlinear Poisson-Boltzmann (NLPB) calculations and test against recent buffer-equilibration atomic emission spectroscopy measurements. Further, we outline the statistical mechanical basis for interpreting IC experiments and clarify the use of specific concentration scales. Near physiological concentrations, MD simulation and 3D-RISM estimates are close to experimental results, but at higher concentrations (>0.7 M), both methods underestimate the number of condensed cations and overestimate the number of excluded anions. The effect of DNA charge on ion and water atmosphere extends 20–25 Å from its surface, yielding layered density profiles. Overall, ion distributions from 3D-RISMs are relatively close to those from corresponding MD simulations, but with less Na+ binding in grooves and tighter binding to phosphates. NLPB calculations, on the other hand, systematically underestimate the number of condensed cations at almost all concentrations and yield nearly structureless ion distributions that are qualitatively distinct from those generated by both MD simulation and 3D-RISM. These results suggest that MD simulation and 3D-RISM may be further developed to provide quantitative insight into the characterization of the ion atmosphere around nucleic acids and their effect on structure and stability.  相似文献   

15.
The pH-driven opening and closure of beta-lactoglobulin EF loop, acting as a lid and closing the internal cavity of the protein, has been studied by molecular dynamics (MD) simulations and free energy calculations based on molecular mechanics/Poisson-Boltzmann (PB) solvent-accessible surface area (MM/PBSA) methodology. The forms above and below the transition pH differ presumably only in the protonation state of residue Glu89. MM/PBSA calculations are able to reproduce qualitatively the thermodynamics of the transition. The analysis of MD simulations using a combination of MM/PBSA methodology and the colony energy approach is able to highlight the driving forces implied in the transition. The analysis suggests that global rearrangements take place before the equilibrium local conformation is reached. This conclusion may bear general relevance to conformational transitions in all lipocalins and proteins in general.  相似文献   

16.
Effects of ph and ionic strength on phosphatidylserine/phosphatidylcholine mixed membranes prepared on Millipore filter pore surfaces have been studied using spin-labeled phosphatidylcholine. Lowering pH at constant ionic strength and lowering ionic strength at constant pH caused a lateral reorganization of the membrane. The trigger was protonation of the serine carboxyl group which caused solidification of phosphatidylserine molecules in the membrane, leaving a fluid phase consisting mainly of phosphatidylcholine. The appearent pK for the proton-induced phase separation was measured in a wide range of salt concentrations. The ionic strength dependence was satisfactorily explained based on the electrostatic free energy of proton in the field of membrane surface potential. The Gouy-Chapman theory gave a good approximation for the surface potential. The surface pK of phosphatidylserine and phosphatidic acid vesicles was directly measured in various salt concentrations by 31P-NMR and the results confirmed validity of the Gouy-Chapman-type analysis. The lateral reorganization was triggered by electrostatic interaction but the bulk of the stabilization energy for the structural changes would be the gains in intermolecular van der Waals energy due to closer packing of phosphatidylserine on solidification.  相似文献   

17.
A transferable tight-binding parametrization procedure for extended Hückel approximation is proposed, with the charge self-consistent scheme, that could be applied to the quantum molecular dynamics (MD) simulation for long-time dynamics of large-scale systems. In this procedure, either a target molecule is divided into small molecules or another realistic set of small molecules characterizing chemical bonds in the complicated target molecule is adopted. Then, the parameters for these small molecules are adjusted and compared with reference results of energy levels and wave functions by, for example, density functional theory. Upon application to the large target molecule, these parameters are then readjusted directly in the target molecule. An example is demonstrated with MD simulation applied to the ionic liquid molecule N-methyl-N-propylpiperidinium bis trifluoromethanesulfonyl imide (PP13-TFSI). The origin and stability of HOMO–LUMO gap are discussed.  相似文献   

18.
The electrostatic potential of B-DNA   总被引:10,自引:0,他引:10  
B Jayaram  K A Sharp  B Honig 《Biopolymers》1989,28(5):975-993
Electrostatic potentials around DNA are obtained by solving the nonlinear Poisson-Boltzmann (PB) equation. The detailed charge distribution of the DNA and the different polarizabilities of the macromolecule and solvent are included explicitly in the calculations. The PB equation is solved using extensions of a finite difference approach applied previously to proteins. Electrical potentials and ion concentrations are compared to those obtained with simpler models. It is found that the shape of the dielectric boundary between the macromolecule and solvent has significant effects on the calculated potentials near the surface, particularly in the grooves. Sequence-specific patterns are found, the most surprising result being the existence of positive regions of potential near the bases in both the major and minor grooves. The effect of solvent and ionic atmosphere screening of phosphate-phosphate repulsions is studied, and an effective dielectric function, appropriate for molecular mechanics simulations, is derived.  相似文献   

19.
Ionic control of acid phosphatase activity in plant cell walls   总被引:1,自引:1,他引:0  
Abstract. Purified acid phosphatase from sycamore cell walls is not activated by increasing the ionic strength of the reaction mixture. However activation occurs when the enzyme is bound to small cell wall fragments. The apparent activation of the bound enzyme by ions is paralleled by a decline of the substrate concentration C 1/2, that results in half of the maximum rate. Above ionic strengths of about 0.05 the bound and solubilized enzyme forms behave in the same manner. Titration of cell wall fragments at different ionic strengths show that the local pH, inside the cell wall fragments, is lower than the pH in bulk solution. These results are explained in the light of poly-electrolyte theory. The negative charges of the cell walls generate an electrostatic potential that results in the attraction or repulsion of ions. The local concentration of organic phosphate (the substrate of the enzyme) is then lower than its concentration in bulk solution. This concentration difference explains that the value of C 1/2, or of the apparent Km of the bound enzyme, is greater than the true Km of the solubilized enzyme. Increasing the ionic strength tends to equalize bulk and local ion concentrations, and therefore apparently activates the bound enzyme.  相似文献   

20.
The counterion density and the condensation region around DNA have been examined as functions of both ion size and added-salt concentration using Metropolis Monte Carlo (MC) and Poisson–Boltzmann (PB) methods. Two different definitions of the “bound” and “free” components of the electrolyte ion atmosphere were used to compare these approaches. First, calculation of the ion density in different spatial regions around the polyelectrolyte molecule indicates, in agreement with previous work, that the PB equation does not predict an invariance of the surface concentration of counterions as electrolyte is added to the system. Further, the PB equation underestimates the counterion concentration at the DNA surface, compared to the MC results, the difference being greatest in the grooves, where ionic concentrations are highest. If counterions within a fixed radius of the helical axis are considered to be bound, then the fraction of polyelectrolyte charge neutralized by counterions would be predicted to increase as the bulk electrolyte concentration increases. A second categorization—one in which monovalent cations in regions where the average electrostatic potential is ledd than ?kT are considered to be bound—provides an informative basis for comparison of MC and PB with each other and with counterion-condensation theory. By this criterion, PB calculations on the B from of DNA indicate that the amount of bound counterion charge per phosphate group is about .67 and is independent of salt concentration. A particularly provocative observatiob is that when this binding criterion is used, MC calculations quantitatively reproduce the bound fraction predicated by counterion-condensation theory for all-atom models of B-DNA and A-DNA as well as for charged cylindera of varying lineat charge densities. For example, for B-DNA and A-DNA, the fractions of phosphate groups neutralized by 2 Å hard sphere counterions are 0.768 and .817, respectively. For theoretical studies, the rediys enclosing the region in which the electrostatic potential is calculated studies, the radius enclosing the region in which the electrostatic potential is calculated to be less than ?kT is advocated s a more suitable binding or condensation radius that enclosing the fraction of counterions given by (1 – ξ?1). A comparsion of radii calculated using both of these definitions is presented. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号