首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A quantitative genetics approach was used to examine variation in the characteristics of the adhesive plaque of the barnacle Balanus amphitrite Darwin attached to two silicone substrata. Barnacles settled on silicone polymer films occasionally form thick, soft adhesive plaques, in contrast to the thin, hard plaques characteristic of attachment to other surfaces. The proportion of barnacles producing a thick adhesive plaque was 0.31 for Veridian, a commercially available silicone fouling-release coating, and 0.18 for Silastic T-2, a silicone rubber used for mold-making. For both materials, significant variation among maternal families in the proportion of barnacles producing a thick adhesive plaque was observed, which suggests the presence of genetic variation, or maternal environmental effects, for this plaque characteristic. For the Veridian coating, barnacles expressing the thick adhesive plaque also exhibited significantly reduced tenacity. This represents the first reported case for potential genetic control of intraspecific phenotypic variation in the physical characteristics and tenacity of the adhesive of a fouling invertebrate.  相似文献   

2.
Silicone fouling-release coatings represent a non-toxic alternative to biocide-containing ship hull paints. These coatings allow fouling organisms to attach to the hull surface, but prevent firm adhesion. Adhesive tenacity to fouling-release materials varies both among and within species. We quantified broad-sense genetic and environmental sources of intraspecific variation in tenacity to two silicone substrata, for the barnacle Balanus amphitrite. For both materials tenacity varied over an order of magnitude; however, the partitioning of this variation differed between the substrata. For International Veridian, a commercially-available fouling-release coating, removal stress varied significantly among maternal families and replicate barnacle cultures. Variation among the maternal families was associated with previously observed differences among these families in the condition of the adhesive plaque. Additional experiments suggested that variation among the replicate cultures arose from heterogeneity between replicate coatings in properties that affect tenacity. We could not attribute variation in removal stress for Dow Corning Silastic T-2, a silicone rubber used for mold-making, to any of the genetic or environmental sources tested. Instead, variation may have been due to measurement error or heterogeneity within replicate coatings in properties affecting tenacity. Differences among maternal families in removal stress may stem from variation in the interaction between the adhesive and the substratum, or in the viscoelastic properties of the adhesive plaque.  相似文献   

3.
Sun Y  Guo S  Walker GC  Kavanagh CJ  Swain GW 《Biofouling》2004,20(6):279-289
The properties of barnacle adhesive on silicone surfaces were studied by AFM indentation, imaging, and other tests and compared to the barnacle shear adhesion strength. A multilayered structure of barnacle adhesive plaque is proposed based on layered modulus regions measured by AFM indentation. The fracture of barnacles from PDMS surfaces was found to include both interfacial and cohesive failure of barnacle adhesive plaque, as determined by protein staining of the substratum after forced barnacle release from the substrate. Data for freshly released barnacles showed that there was a strong correlation between the mean Young's modulus of the outermost (softest) adhesive layer (E<0.3 MPa) and the shear strength of adhesion, but no correlation for other higher modulus regions. Linear, quadratic, and Griffith's failure criterion (based on rough estimate of crack length) regressions were used in the fit, and showed significance.  相似文献   

4.
The properties of barnacle adhesive on silicone surfaces were studied by AFM indentation, imaging, and other tests and compared to the barnacle shear adhesion strength. A multilayered structure of barnacle adhesive plaque is proposed based on layered modulus regions measured by AFM indentation. The fracture of barnacles from PDMS surfaces was found to include both interfacial and cohesive failure of barnacle adhesive plaque, as determined by protein staining of the substratum after forced barnacle release from the substrate. Data for freshly released barnacles showed that there was a strong correlation between the mean Young's modulus of the outermost (softest) adhesive layer (E< 0.3 MPa) and the shear strength of adhesion, but no correlation for other higher modulus regions. Linear, quadratic, and Griffith's failure criterion (based on rough estimate of crack length) regressions were used in the fit, and showed significance.  相似文献   

5.

Barnacle release mechanisms and the durability of silicone coatings have been studied. Release studies were performed on both transparent, single‐layer silicone coatings and duplex silicone coatings. The release forces of pseudobarnacles (epoxied studs) and Chesapeake Bay barnacles (Balanus improvisus) were measured with a pull‐off (tension) tester; modes of release were revealed in video recordings of the separation process from transparent coatings on glass. Scratch tests with 0.8 mm spherically‐tipped diamond provided a measure of durability (tear resistance). Release forces from both coatings decreased as coating thickness increased. Both pseudobarnacles and barnacles separated by a peeling process, although differences in peeling modes were seen. The durability of coatings increased with increasing coating thickness. Release behavior is discussed in terms of a fracture mechanic's model for pull‐off separation, and the differences in adhesion between barnacles and pseudobarnacles are described.  相似文献   

6.

Fouling-release coatings prevent fouling of ships' hulls through hydrodynamic forces generated as the ship moves through the water. The effectiveness of such coatings may be evaluated by measuring the adhesion strength of settled organisms, e.g. barnacles. The influence of desiccation of the barnacle adhesive on such measurements was investigated. Shear forces required to remove barnacles of the genus Balanus increased during the course of desiccation up to the point when the barnacles suddenly self-detached. The increase was thought to be due to the rising cohesive strength of the adhesive. Growing tensile forces within the weakly cross-linked adhesive, however, are suggested to have led to self-detachment. The shear forces required to remove barnacles of the genus Elminius were generally low and did not differ significantly during the course of desiccation. The different results may be attributed to specific base morphologies. It was concluded that measuring the adhesion strength of members of the Balanidae on non-stick surfaces in air could produce flawed results due to the influence of desiccation of the barnacle adhesive. The investigations have also provided new insights into the characteristics of barnacle adhesive.  相似文献   

7.
Santos R  Flammang P 《Biofouling》2006,22(3-4):187-200
The variation in tenacity of single tube feet from three sea urchin species with contrasted habitats was assessed and correlated with the ultrastructure of their adhesive secretory granules. The tube feet of Arbacia lixula and Sphaerechinus granularis have larger discs and more complex adhesive granules than those of Paracentrotus lividus, but A. lixula attaches to glass with significantly lower tenacity (0.05-0.09 MPa) than the other two species (0.10-0.20 and 0.11 -0.29 MPa, respectively). However, the estimated maximal attachment force one tube foot can produce is similar for all three species investigated. No clear relationship between tube foot size, tenacity, adhesive secretory granule ultrastructure and species habitat can therefore be established. For P. lividus the tenacity of single tube foot discs on four different smooth substrata was also compared, which showed that both the total surface energy and the ratio of polar to non-polar forces at the surface influence tube foot attachment strength. This influence of the surface characteristics of the substratum appears to affect the cohesiveness of the adhesive secretion more than its adhesiveness.  相似文献   

8.
A number of factors affect the adhesion strength of organisms to fouling-release coatings, and except for a few studies focussing on black or white surfaces none have dealt specifically with the effect of coating colour. The aim was to test the effect of colour on the adhesion strength of the barnacle Elminius modestus. Panels coated in six commercial colours of Intersleek 700® were submerged at two field sites and barnacles were pushed-off using a standard assay procedure. The strength of adhesion (SOA) varied between and within sites for colour and by barnacle basal area, SOA per unit area being higher for smaller barnacles. Higher SOA with a small basal area may be because of size-specific predation, differential hydrodynamic effects or adhesive failure with age. The complex effect of colour on barnacle adhesion may be because of physico-chemical surface characteristics varying with pigments, and their interactions with local environmental conditions, as well as interactions with the settling barnacle larvae.  相似文献   

9.
Adhesives that are naturally produced by marine organisms are potential sources of inspiration in the search for medical adhesives. Investigations of barnacle adhesives are at an early stage but it is becoming obvious that barnacles utilize a unique adhesive system compared to other marine organisms. The current study examined the fine structure and chemistry of the glandular system that produces the adhesive of the barnacle Lepas anatifera. All components for the glue originated from large single‐cell glands (70–180 μm). Staining (including immunostaining) showed that L ‐3,4‐dihydroxyphenylalanine and phosphoserine were not present in the glue producing tissues, demonstrating that the molecular adhesion of barnacles differs from all other permanently gluing marine animals studied to date. The glandular tissue and adhesive secretion primarily consisted of slightly acidic proteins but also included some carbohydrate. Adhesive proteins were stored in cytoplasmic granules adjacent to an intracellular drainage canal (ICC); observations implicated both merocrine and apocrine mechanisms in the transport of the secretion from the cell cytoplasm to the ICC. Inside the ICC, the secretion was no longer contained within granules but was a flocculent material which became “clumped” as it traveled through the canal network. Hemocytes were not seen within the adhesive “apparatus” (comprising of the glue producing cells and drainage canals), nor was there any structural mechanism by which additions such as hemocytes could be made to the secretion. The unicellular adhesive gland in barnacles is distinct from multicellular adhesive systems observed in marine animals such as mussels and tubeworms. Because the various components are not physically separated in the apparatus, the barnacle adhesive system appears to utilize completely different and unknown mechanisms for maintaining the liquid state of the glue within the body, as well as unidentified mechanisms for the conversion of extruded glue into hard cement. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
The invasive freshwater mollusc Dreissena bugensis (quagga mussel) sticks to underwater surfaces via a proteinacious ‘anchor’ (byssus), consisting of a series of threads linked to adhesive plaques. This adhesion results in the biofouling of crucial underwater industry infrastructure, yet little is known about the proteins responsible for the adhesion. Here the identification of byssal proteins extracted from freshly secreted byssal material is described. Several new byssal proteins were observed by gel electrophoresis. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to characterize proteins in different regions of the byssus, particularly those localized to the adhesive interface. Byssal plaques and threads contain in common a range of low molecular weight proteins, while several proteins with higher mass were observed only in the plaque. At the adhesive interface, a plaque-specific ~8.1 kDa protein had a relative increase in signal intensity compared to the bulk of the plaque, suggesting it may play a direct role in adhesion.  相似文献   

11.

This study compared the shear adhesion strength of barnacles, oysters and tubeworms on eight RTV 11‐based silicone fouling‐release coatings containing different silicone oil additives. It was found that adhesion strength differed among species and coating types. In most cases, oysters and tubeworms had higher adhesion strengths than barnacles. Barnacle adhesion strength was reduced on all coatings containing oil additives; however, this was not generally true for oysters and tubeworms. The difference in the adhesion strength among the three organisms tested in this study emphasizes the importance of understanding the fundamental interaction between marine invertebrate adhesives and the substratum.  相似文献   

12.
Release mechanisms of barnacles (Amphibalanus amphitrite or Balanus amphitrite) reattached to platinum-cured silicone coatings were studied as a function of coating thickness (210-770 microm), elastic modulus (0.08-1.3 MPa), and shear rate (2-22 microm s(-1)). It was found that the shear stress of the reattached, live barnacles necessary to remove from the silicone coatings was controlled by the combined term (E/t)(0.5) of the elastic modulus (E) and thickness (t). As the ratio of the elastic modulus to coating thickness decreased, the barnacles were more readily removed from the silicone coatings, showing a similar release behavior to pseudobarnacles (epoxy glue). The barnacle mean shear stress ranged from 0.017 to 0.055 MPa whereas the pseudobarnacle mean shear stress ranged from 0.022 to 0.095 MPa.  相似文献   

13.
When exploring immersed surfaces the cypris larvae of barnacles employ a tenacious and rapidly reversible adhesion mechanism to facilitate their characteristic ‘walking’ behaviour. Although of direct relevance to the fields of marine biofouling and bio-inspired adhesive development, the mechanism of temporary adhesion in cyprids remains poorly understood. Cyprids secrete deposits of a proteinaceous substance during surface attachment and these are often visible as ‘footprints’ on previously explored surfaces. The attachment structures, the antennular discs, of cyprids also present a complex morphology reminiscent of both the hairy appendages used by some terrestrial invertebrates for temporary adhesion and a classic ‘suction cup’. Despite the numerous analytical approaches so-far employed, it has not been possible to resolve conclusively the respective contributions of viscoelastic adhesion via the proteinaceous ‘temporary adhesive’, ‘dry’ adhesion via the cuticular villi present on the disc and the behavioural contribution by the organism. In this study, high-speed photography was used for the first time to capture the behaviour of cyprids at the instant of temporary attachment and detachment. Attachment is facilitated by a constantly sticky disc surface – presumably due to the presence of the proteinaceous temporary adhesive. The tenacity of the resulting bond, however, is mediated behaviourally. For weak attachment the disc is constantly moved on the surface, whereas for a strong attachment the disc is spread out on the surface. Voluntary detachment is by force, requiring twisting or peeling of the bond – seemingly without any more subtle detachment behaviours. Micro-bubbles were observed at the adhesive interface as the cyprid detached, possibly an adaptation for energy dissipation. These observations will allow future work to focus more specifically on the cyprid temporary adhesive proteins, which appear to be fundamental to adhesion, inherently sticky and exquisitely adapted for reversible adhesion underwater.  相似文献   

14.
Silicone coatings are currently the most effective non-toxic fouling release surfaces. Understanding the mechanisms that contribute to the performance of silicone coatings is necessary to further improve their design. The objective of this study was to examine the effect of coating thickness on basal plate morphology, growth, and critical removal stress of the barnacle Balanus amphitrite. Barnacles were grown on silicone coatings of three thicknesses (0.2, 0.5 and 2 mm). Atypical ("cupped") basal plate morphology was observed on all surfaces, although there was no relationship between coating thickness and i) the proportion of individuals with the atypical morphology, or ii) the growth rate of individuals. Critical removal stress was inversely proportional to coating thickness. Furthermore, individuals with atypical basal plate morphology had a significantly lower critical removal stress than individuals with the typical ("flat") morphology. The data demonstrate that coating thickness is a fundamental factor governing removal of barnacles from silicone coatings.  相似文献   

15.
Five non-biocidal xerogel coatings were compared to two commercial non-biocidal coatings and a silicone standard with respect to antifouling (AF)/fouling-release (FR) characteristics. The formation and release of biofilm of the marine bacterium Cellulophaga lytica, the attachment and release of the microalga Navicula incerta, and the fraction removal and critical removal stress of reattached adult barnacles of Amphibalanus amphitrite were evaluated in laboratory assays. Correlations of AF/FR performance with surface characteristics such as wettability, surface energy, elastic modulus, and surface roughness were examined. Several of the xerogel coating compositions performed well against both microfouling organisms while the commercial coatings performed less well toward the removal of microalgae. Reattached barnacle adhesion as measured by critical removal stress was significantly lower on the commercial coatings when compared to the xerogel coatings. However, two xerogel compositions showed release of 89-100% of reattached barnacles. These two formulations were also tested in the field and showed similar results.  相似文献   

16.
A series of polysulfone and polyacrylate-based zwitterionic coatings were prepared on epoxy-primed aluminum substrata and characterized for their antifouling (AF) and fouling-release (FR) properties towards marine bacteria, microalgae and barnacles. The zwitterionic polymer coatings provided minimal resistance against bacterial biofilm retention and microalgal cell attachment, but facilitated good removal of attached microbial biomass by exposure to water-jet apparatus generated hydrodynamic shearing forces. Increasing the ion content of the coatings improved the AF properties, but required a stronger adhesive bond to the epoxy-primed aluminum substratum to prevent coating swelling and dissolution. Grafted poly(sulfobetaine) (gpSBMA), the most promising zwitterionic coating identified from microfouling evaluations, enabled the removal of four out of five barnacles reattached to its surface without incurring damage to their baseplates. This significant result indicated that gpSBMA relied predominately on its surface chemistry for its FR properties since it was very thin (~1–2 µm) relative to commercial coating standards (>200 µm).  相似文献   

17.
In plant species producing non‐dormant seeds, the germination time (from the start of imbibition to radicle emergence) is the main factor determining the timing of seedling emergence. We investigated maternal and paternal genetic effects on the germination time of non‐dormant seeds of a monocarpic perennial, Aster kantoensis Kitamura (Compositae). Three sets of reciprocal diallel crosses among five plants were conducted to produce genetic variation in seeds, and the germination time of the progeny of each parent was determined. The effects of the maternal parent and the interaction of maternal and paternal parents on the germination time of progeny were significant in all sets, and the effect of the paternal parent was significant in two of the three sets. This result means that the germination time of the progeny of a maternal or paternal parent can vary with the genotype of its mating partners. Because variation in the emergence time of seedlings contributes to avoiding seedling loss owing to unpredictable environmental changes, genetic variation in the germination time among the progeny of each parent mating with multiple partners could contribute to the establishment of the parent's seedlings in species producing non‐dormant seeds in the field.  相似文献   

18.
Sea urchin adoral tube feet are highly specialized organs that have evolved to provide efficient attachment to the substratum. They consist of a disk and a stem that together form a functional unit. Tube foot disk tenacity (adhesive force per unit area) and stem mechanical properties (e.g., stiffness) vary between species but are apparently not correlated with sea urchin taxa or habitats. Moreover, ultrastructural studies of sea urchin disk epidermis pointed out differences in the internal organization of the adhesive secretory granules among species. This prompted us to look for interspecific variability in the composition of echinoid adhesive secretions, which could explain the observed variability in adhesive granule ultrastructure and disk tenacity. Antisera raised against the footprint material of Sphaerechinus granularis (S. granularis) were first used to locate the origin of adhesive footprint constituents in tube feet by taking advantage of the polyclonal character of the generated antibodies. Immunohistochemical assays showed that the antibodies specifically labeled the adhesive secretory cells of the disk epidermis in the tube feet of S. granularis. The antibodies were then used on tube foot histological sections from seven other sea urchin species to shed some light on the variability of their adhesive substances by looking for antibody cross‐reactivity. Surprisingly, no labeling was observed in any of the species tested. These results indicate that unlike the adhesive secretions of asteroids, those of echinoids do not share common epitopes on their constituents and thus would be “species‐specific.” In sea urchins, variations in the composition of adhesive secretions could therefore explain interspecific differences in disk tenacity and in adhesive granule ultrastructure. J. Morphol., 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
Atherosclerotic plaque rupture is the main cause of myocardial infarction and stroke. Both clinical and computational studies indicate that the shoulder region, where a plaque joins the vessel wall, is rupture-prone. Previous mechanistic studies focused on mechanical properties of the fibrous cap and tensile stresses, which could lead to tearing of the cap. Based on clinical observations of "mobile floating plaques," we postulate that de-adhesion between the fibrous cap and the underlying vessel wall may also play a role in plaque failure. Thus, measuring adhesive strength of the bond between plaque and vascular wall may provide useful new insights into plaque stability. Delamination experiments, widely used in examining inter-laminar adhesive strength of biological materials, were used to measure adhesive strength of advanced plaques in apolipoprotein E-knockout (apoE-KO) mice after 8 months on Western diet. We measured adhesive strength in terms of local energy release rate, G, during controlled plaque delamination. As a measure of the fracture energy required to delaminate a unit area of plaque from the underlying internal elastic lamina (IEL), G provides a quantitative measure of local adhesive strength of the plaque-IEL interface. The values for G acquired from 16 plaques from nine apoE-KO mouse aortas formed a positively skewed distribution with a mean of 24.5 J/m(2), median of 19.3 J/m(2), first quartile of 10.8 J/m(2), and third quartile of 34.1 J/m(2). These measurements are in the lower range of values reported for soft tissues. Histological studies confirmed delamination occurred at the interface between plaque and IEL.  相似文献   

20.
The freshwater zebra mussel (Dreissena polymorpha) owes a large part of its success as an invasive species to its ability to attach to a wide variety of substrates. As in marine mussels, this attachment is achieved by a proteinaceous byssus, a series of threads joined at a stem that connect the mussel to adhesive plaques secreted onto the substrate. Although the zebra mussel byssus is superficially similar to marine mussels, significant structural and compositional differences suggest that further investigation of the adhesion mechanisms in this freshwater species is warranted. Here we present an ultrastructural examination of the zebra mussel byssus, with emphasis on interfaces that are critical to its adhesive function. By examining the attached plaques, we show that adhesion is mediated by a uniform electron dense layer on the underside of the plaque. This layer is only 10-20 nm thick and makes direct and continuous contact with the substrate. The plaque itself is fibrous, and curiously can exhibit either a dense or porous morphology. In zebra mussels, a graded interface between the animal and the substrate mussels is achieved by interdigitation of uniform threads with the stem, in contrast to marine mussels, where the threads themselves are non-uniform. Our observations of several novel aspects of zebra mussel byssal ultrastructure may have important implications not only for preventing biofouling by the zebra mussel, but for the development of new bioadhesives as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号