首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For the purpose of molecular dynamics simulations of large biopolymers we have built a parallel computer with a systolic loop architecture, based on Transputers as computational units, and have programmed it in occam II. The computational nodes of the computer are linked together in a systolic ring. The program based on this topology for large biopolymers increases its computational throughput nearly linearly with the number of computational nodes. The program developed is closely related to the simulation programs CHARMM and XPLOR, the input files required (force field, protein structure file, coordinates) and output files generated (sets of atomic coordinates representing dynamic trajectories and energies) are compatible with the corresponding files of these programs. Benchmark results of simulations of biopolymers comprising 66, 568, 3 634, 5 797 and 12 637 atoms are compared with XPLOR simulations on conventional computers (Cray, Convex, Vax). These results demonstrate that the software and hardware developed provide extremely cost effective biopolymer simulations. We present also a simulation (equilibrium of X-ray structure) of the complete photosynthetic reaction center of Rhodopseudomonas viridis (12 637 atoms). The simulation accounts for the Coulomb forces exactly, i.e. no cut-off had been assumed.  相似文献   

2.
Abstract

In this paper, non-equilibrium molecular dynamics (NEMD) simulations of planar Couette flow are reported for an expanded collapsed atom model for liquid pentane isomers at 273.15 K. The strain rate dependent viscosity for liquid pentane isomers exhibits shear-thinning and a linear dependence on γ1/2. Newtonian viscosities for liquid pentane isomers obtained by a linear extrapolation to zero strain rate are: 0.256cP for normal pentane, 0.219cP for isopentane, and 0.168cP for neopentane. The strain rate dependent pressure difference and normal stress difference vary nearly linearly with the γ3/2 law and the γ law, respectively, for all three liquid pentane isomers. The overall trend of the square of radius of gyration and end-to-end distance for normal pentane is a linear increase with strain rate. For isopentane, the trend hardly changes for the range of shear rate in this study. The alignment angle decreases with increasing strain rate and the alignment angle of the straight chain alkane is less than that of the branched chain alkane. The average percentage of C?C?C?C trans for normal pentane as a function of strain rate is in excellent correlation with the square of the radius of gyration and the average end-to-end distance. Applying the strain rate in the x-direction, the alignment angle is forced to decrease and the percentage of C?C?C?C trans increases with increasing strain rate.  相似文献   

3.
Software Distributed Shared Memory (DSM) systems can be used to provide a coherent shared address space on multicomputers and other parallel systems without support for shared memory in hardware. The coherency software automatically translates shared memory accesses to explicit messages exchanged among the nodes in the system. Many applications exhibit a good performance on such systems but it has been shown that, for some applications, performance critical messages can be delayed behind less important messages because of the enqueuing behavior in the communication libraries used in current systems. We present in this paper a new portable communication library that supports priorities to remedy this situation. We describe an implementation of the communication library and a quantitative model that is used to estimate the performance impact of priorities for a typical situation. Using the model, we show that the use of high-priority communication reduces the latency of performance critical messages substantially over a wide range of network design parameters. The latency is reduced with up to 10–25% for each delaying low priority message in the queue ahead.  相似文献   

4.
Abstract

We present new results for thermodynamic properties and viscosities of pure dumbbell fluids, spherical/dumbbell mixtures, and dumbbell/dumbbell mixtures. It is evident that the interaction between dumbbell molecules is less attractive than that between spherical molecules which leads to lower viscosities. The shear viscosities and the LJ energies of both spherical Ar/dumbbell Kr (case B) and dumbbell Ar/dumbbell Kr (case C) are described quite well by the liquid mixture expression. The ideality in case C is much better than in case B which is consistent with the idea that dumbbell/dumbbell mixtures are likely to be more ideal than spherical/dumbbell mixtures. But the mixture pressures of the spherical/dumbbell mixture (case B) are described accurately by the ideal liquid mixture expression while those of the dumbbell/dumbbell mixture (case C) are not, which is not consistent with the better ideality of case C in the shear viscosity and the LJ energy than case B.  相似文献   

5.
Abstract

We present new results for thermodynamic properties and viscosities of pure quadrupolar fluids, a pure dipolar quadrupolar fluid, nonquadrupolar/quadrupolar mixtures, and quadrupolar/quadrupolar mixtures. It is evident that, the addition of quadrupolar interactions to the pure Ar and the addition of quadrupolar interactions to the pure dipolar Ar, leads to higher viscosities as was observed in the addition of dipolar interactions to the pure Ar [Lee and Cummings, J. Chem. Phys., 105, 2044 (1996)]. The total energies and the mixture densities show a linear dependence for both nonquadrupolar Ar/quadrupolar Kr (case B) and quadrupolar Ar/quadrupolar Kr (case C), and the linearity of case C is better than that of case B. This is not consistent with the idea that in the cases of the dipolar mixtures, dipolar/dipolar and nondipolar/nondipolar mixture are likely to be more ideal than nondipolar/dipolar mixtures. This is mainly due to the weaker interaction of quadrupole-quadrupole than that of dipoledipole.  相似文献   

6.
Parallel computers offer a more cost-effective route to high performance computing than traditional single processor machines. Software for such machines is still in its infancy and they are often much more difficult to program than sequential machines. In addition many of the algorithms which are successful with sequential and vector processors are no longer appropriate. Both the force calculation and integration steps of molecular dynamics are parallel in nature and for that reason we have developed a parallel algorithm based on the link cell technique. This method is particularly efficient when the range of intermolecular potential is much smaller than the dimensions of the simulation box. The details of the algorithm are presented for systems of atoms in two and three dimensions using a number of decompositions into sub-units. The algorithm has been tested on an Intel iPSC/2 and a Cray X-MP/416 and the results are presented for simulations of up to 2 · 106 atoms.  相似文献   

7.
TACO is a template library that implements higher-order parallel operations on distributed object sets by means of reusable topology classes and C++ function templates. In this paper we discuss an experimental application that exploits TACO's distributed object groups and collective operations for computing the similarity between groups of molecular sequences, a computationally intensive core problem in molecular biology research. In particular we show how TACO's distributed collections can be conveniently combined with well known concepts found in the C++ standard template library (STL) to solve matching and sorting problems effectively on distributed hardware platforms. The resulting implementation is concise and gives excellent parallel performance on PC- and workstation clusters.  相似文献   

8.
Abstract

We discuss some of the problems that have frustrated the development of reliable model intermolecular potentials for polyatomic molecules. In particular, the usual assumption of an isotropic atom-atom model potential is analysed, and evidence for its inadequacies is presented. A new approach to designing model potentials, an anisotropic site—site model, is introduced by describing several applications to both small and organic molecules, including molecular dynamics and Monte Carlo simulations. The anisotropy required in an atom—atom potential can be directly linked to the non-spherical features in the valence electron distribution, such as lone pairs and π electrons. An accurate electrostatic model for these effects can be constructed from a distributed multipole analysis of the ab initio wavefunction. The empirically required forms of anisotropy in the repulsion potential can also be qualitatively linked to the molecular electron density difference map. Thus, consideration of the molecular bonding can be a useful indication of how to construct adequate model intermolecular pair potentials.  相似文献   

9.
Abstract

We present a parallel algorithm for molecular dynamics involving short-range two- and three-body potentials and the pair-correlation function, g(r). The method is based on a spatial decomposition of the simulation box that takes advantage of a linked-cell list, and allows a load balanced partition of the computations of both the forces and g(r) over the processors. The tests of the program is conducted by evaluating the efficiency for both the thermalization phase and the production phase of the simulation. This method is successfully applied to the calculation of the direct correlation function of fluid krypton at small scattering angle along the T = 297 K supercritical isotherm.  相似文献   

10.
A new potential model has been developed for the simulation of amorphous silica based on the ab initio potential model of Pyper. This model promises to be of value in the simulation of silica at high pressures.  相似文献   

11.
Abstract

A Molecular Dynamics simulation of a 1.1 molal aqueous BeCl2 solution was performed with the flexible BJH model for water and a newly developed three-body potential for Be2+ -H2O interactions derived from ab-initio calculations. The properties of the potential are discussed and radial distribution functions, angular distributions and dynamic properties of the solution like vibrational modes and hindered rotations are analyzed.  相似文献   

12.
A Load Balancing Tool for Distributed Parallel Loops   总被引:1,自引:0,他引:1  
Large scale applications typically contain parallel loops with many iterates. The iterates of a parallel loop may have variable execution times which translate into performance degradation of an application due to load imbalance. This paper describes a tool for load balancing parallel loops on distributed-memory systems. The tool assumes that the data for a parallel loop to be executed is already partitioned among the participating processors. The tool utilizes the MPI library for interprocessor coordination, and determines processor workloads by loop scheduling techniques. The tool was designed independent of any application; hence, it must be supplied with a routine that encapsulates the computations for a chunk of loop iterates, as well as the routines to transfer data and results between processors. Performance evaluation on a Linux cluster indicates that the tool reduces the cost of executing a simulated irregular loop without load balancing by up to 81%. The tool is useful for parallelizing sequential applications with parallel loops, or as an alternate load balancing routine for existing parallel applications.  相似文献   

13.
A distributed computing system is developed to search and analyze genetic databases using parallel computing technologies. Queries are processed by a local network PC cluster. A universal task and data exchange format is developed for effective query processing. A multilevel hierarchic task batching procedure is elaborated to generate multiple subtasks and distribute them over cluster units under dynamic priority levels and with dynamic distribution of replicated source data subbases. Primary source data preparation and generation of annotation word indices are used to significantly reduce query processing time.  相似文献   

14.
Kandel ER 《Bioscience reports》2004,24(4-5):475-522
The biology of learning, and short-term and long-term memory, as revealed by Aplysia and other organisms, is reviewed.  相似文献   

15.
16.
Abstract

A survey is given of methods for simulation of molecular systems on a computer. The various assumptions, approximations and limitations are discussed and the possibility of making comparisons with experimental quantities is assessed. Finally, a number of practical applications of molecular dynamics simulation techniques in chemistry are reviewed.  相似文献   

17.
Abstract Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G(7)) quadruplex structures with Na(+) or K(+) ions coordinated in the cavity formed by the O6 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 ? from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na(+) counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, O6 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na(+) ions, within the quadruplex cavity, are more mobile than coordinated K(+) ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.  相似文献   

18.
Abstract

Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G7) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the O6 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 Å from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na+ counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, O6 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.  相似文献   

19.
Abstract

A quantum dynamics simulation of vibrations of molecules including transition from state to state is demonstrated based upon the Pechukas method. The method has been examined to clarify characteristics in relation to the simulation. It may present a lot of useful information of the vibrational relaxation and thermal excitation of the molecule.  相似文献   

20.
Abstract

We present a comparative study, using molecular dynamics, of systems of diatomic, hard dumb-bell, molecules in which the interatomic distance is either constrained to a fixed value or is allowed to vary freely between preset limits. A significant improvement in simulation effciency can be attained by allowing the bond length to vary. We find that thermodynamic properties, and some time correlation functions, are only slightly affected by the removal of the rigid bond-length constraint. The atomic velocity correlation function responds dramatically at short times to changes in the degree of non-rigidity, but at long times these differences are much less important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号