首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Active site titration by a reversible tight-binding inhibitor normally depends on prior knowledge of the inhibition constant. Conversely, the determination of tight-binding inhibition constants normally requires prior knowledge of the active enzyme concentration. Often, neither of these quantities is known with sufficient accuracy. This paper describes experimental conditions under which both the enzyme active site concentration and the tight-binding inhibition constant can be determined simultaneously from a single dose-response curve. Representative experimental data are shown for the inhibition of human kallikrein.  相似文献   

2.
A novel rate equation to characterize the dose-response behavior of a moderately potent ("classical") enzyme inhibitor contaminated with a very potent ("tight-binding") impurity is derived. Mathematical properties of the new rate equation show that, for such contaminated materials, experimentally observed I(50) values are ambiguous. The four-parameter logistic equation, conventionally used to determine I(50) values, cannot be used to detect the presence of tight-binding impurities in inhibitor samples. In contrast, fitting the newly derived rate equation to inhibitor dose- response curves can, in favorable cases, reveal whether the unknown material is chemically homogeneous or whether it is contaminated with a tight-binding impurity. The limitations of our method with respect to the detectable range of inhibition constants (both classical and tight-binding) were examined by using Monte-Carlo simulations. To test the new analytical procedure experimentally, we added a small amount (0.02 mole%) of a tight-binding impurity (K(i)=0.065 nM) to an otherwise weak inhibitor of human mast-cell tryptase (K(i)=50.4 microM). The resulting material was treated as "unknown." Our kinetic equation predicts that such adulterated material should show I(50)=0.40 microM, which was identical to the experimentally observed value. The best-fit value of the apparent inhibition constants for the tight-binding inhibitor was K(i)=(0.107+/-0.035)nM, close to the true value of 0.065 nM.  相似文献   

3.
The nonsteroidal anti-inflammatory drugs flurbiprofen and ibuprofen were modified in an attempt to alter the kinetics of inhibitor binding by COX-1. Contrary to prior predictions, a halogen substituent is not sufficient to confer slow tight-binding behavior. Conversion of the carboxylate moiety of flurbiprofen to an ester or amide abolishes slow tight-binding behavior, regardless of halogenation state.  相似文献   

4.
Transgenic tobacco with RuBP-limited photosynthetic assimilationdue to a 95% reduction in phosphoribulokinase activity, hadhigher specific activities of Rubisco in fresh extracts andafter full activation, than in the wild type. Differences inthe amounts of a daytime tight-binding inhibitor were sufficientto contribute significantly to these activity differences. Key words: Nicotiana tabacum, transgenic plant, phosphoribulokinase, Rubisco, tight-binding inhibitor  相似文献   

5.
Proteolytic signalling cascades control a wide range of physiological responses. In order to respond rapidly, protease activity must be maintained at a basal level: the component zymogens must be sequentially activated and actively degraded. At the same time, signalling cascades must respond precisely: high target specificity is required. The insects have a wide range of trapping- and tight-binding protease inhibitors, which can regulate the activity of individual proteases. In addition, the interactions between component proteases of a signalling cascade can be modified by serine protease homologues. The suicide-inhibition mechanism of serpin family inhibitors gives rapid turnover of both protease and inhibitor, but target specificity is inherently broad. Similarly, the TEP/macroglobulins have extremely broad target specificity, which suits them for roles as hormone transport proteins and sensors of pathogenic virulence factors. The tight-binding inhibitors, on the other hand, have a lock-and-key mechanism capable of high target specificity. In addition, proteins containing multiple tight-binding inhibitory domains may act as scaffolds for the assembly of signalling complexes. Proteolytic cascades regulated by combinations of different types of inhibitor could combine the rapidity of suicide-inhibitors with the specificity lock-and-key inhibitors. This would allow precise control of physiological responses and may turn out to be a general rule.  相似文献   

6.

Extraordinary electrical and optical features of graphene-based materials attract researchers to improve sensing center of different sensors using them. In this research, the effects of sensing molecules on electro-optical features of graphene-based sensors are modeled. The adsorption effect on the Hamiltonian of the system based on tight-binding model is explored, and also the system band structure is investigated analytically. Then, refractive index deviations based on band gap variations are discovered which are used in response modeling of a graphene-based surface plasmon resonance (SPR) sensor.

  相似文献   

7.
When CO2/Mg2+-activated spinach leaf ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) is incubated with the transition-state analog 2-carboxyarabinitol 1,5-bisphosphate, an essentially irreversible complex is formed. The extreme stability of this quaternary complex has allowed the use of native analytical isoelectric focusing, anion-exchange chromatography, and nondenaturing polyacrylamide gel electrophoresis to probe the mechanism of the binding process and the effects of ligand tight-binding on the structure of the protein molecule. Changes in the chromatographic and electrophoretic properties of the enzyme upon tight binding of the inhibitor reveal that the ligand induces a conformational reorganization which extends to the surface of the protein molecule and, at saturation, results in a 16% decrease in apparent molecular weight. Analysis of ligand binding by isoelectric focusing shows that (i) incubating the protein with a stoichiometric molar concentration of ligand (site basis) results in an apparently charge homogeneous enzyme population with an isoelectric point of 4.9, and (ii) substoichiometric levels of ligand produce differential effects on each of the charge microheterogeneous native enzyme forms. These stoichiometry-dependent changes in electrofocusing band patterns were employed as a probe of cooperativity in the ligand tight-binding process. The tight-binding reaction was shown to be negatively cooperative.  相似文献   

8.
The reaction of chymase, a chymotryptic proteinase from human skin, and bovine pancreatic chymotrypsin with a number of time-dependent inhibitors has been studied. An integrated equation, relating product formation with time, has been derived for the reaction of enzymes with time-dependent inhibitors in the presence of substrate. This is based on a two-step model in which a rapidly reversible, non-covalent complex (EI) is formed prior to a tighter, less readily reversible complex (EI)*). The equation depends on the simplifying assumption [I] much greater than [E], but is applicable to reversible and irreversible slow-binding and tight-binding inhibitors whether or not they show saturation kinetics. The method has been applied to the reaction of chymase and chymotrypsin with the tetrapeptide aldehyde, chymostatin, basic pancreatic trypsin inhibitor and Ala-Ala-Phe-chloromethylketone (AAPCK). The irreversible inhibitor, AAPCK, showed the expected saturation kinetics for both enzymes and the apparent first-order rate constants (k2) and dissociation constants (Ki) for the non-covalent complexes were determined. Chymostatin was a much more potent inhibitor which failed to show a saturation effect. The second-order rate constant of inactivation (k2/Ki), the first-order reactivation rate constant (k-2), and the dissociation constant of the covalent complex (Ki*) were determined. Basic pancreatic trypsin inhibitor, a potent inhibitor of chymotrypsin, had similar kinetics to chymostatin but failed to inhibit chymase. The applicability of the two-step model and the integrated equation to slow- and tight-binding inhibitors is discussed in relation to a number of examples from the literature.  相似文献   

9.
The rate equation for a tight-binding inhibitor of an enzyme-catalysed first-order reversible reaction was used to derive two integrated equations. One of them covers the situations in which competitive, uncompetitive or non-competitive inhibition occurs and the other refers to the special non-competitive case where the two inhibition constants are equal. For these equations, graphical and non-linear regression methods are proposed for distinguishing between types of inhibition and for calculating inhibition constants from progress-curve data. The application of the non-linear regression to the analysis of stimulated progress curves in the presence of a tight-binding inhibitor is also presented. The results obtained are valid for any type of 'dead-end'-complex-forming inhibitor and can be used to characterize an unknown inhibitor on the basis of progress curves.  相似文献   

10.
Abstract

Coformycin analogues 1–6 were synthesized and biochemically screened against adenosine deaminase in order to assess the relative contributions of N-4, N-6, and the N-3 sugar moiety to the mode of enzyme inhibition. Our results indicate that N-4 plays a relatively greater role than N-6 in enzyme tight-binding, and that a benzyl group can substitute for the sugar moiety at N-3. The absence of a sugar or benzyl group at N-3, however, leads to loss of activity. The hydroxyl group at C-8, while crucial for activity, does not alone confer the tight-binding characteristics to coformycins.  相似文献   

11.
Determination of tight-binding inhibition constants by nonlinear least-squares regression requires sufficiently good initial estimates of the best-fit values. Normally an initial estimate of the inhibition constant must be provided by the investigator. This paper describes an automatic procedure for the estimation of tight-binding inhibition constants directly from dose-response data. Because the procedure does not require human intervention, it was incorporated into an algorithm for high-throughput screening of enzyme inhibitors. A suitable computer program is available electronically (http://www.biokin.com). Representative experimental data are shown for the inhibition of human mast-cell tryptase.  相似文献   

12.
Du X  Tove S  Kast-Hutcheson K  Grunden AM 《FEBS letters》2005,579(27):6140-6146
Prolidases are dipeptidases specific for cleavage of Xaa-Pro dipeptides. Pyrococcus furiosus prolidase is a homodimer having one Co-bound dinuclear metal cluster per monomer with one tightly bound Co(II) site and the other loosely bound (Kd 0.24 mM). To identify which Co site is tight-binding and which is loose-binding, site-directed mutagenesis was used to modify amino acid residues that participate in binding the Co1 (E-313 and H-284), the Co2 site (D-209) or the bidentate ligand (E-327). Metal-content, enzyme activity and CD-spectra analyses of D209A-, H284L-, and E327L-prolidase mutants show that Co1 is the tight-binding and Co2 the loose-binding metal center.  相似文献   

13.
Ribonuclease inhibitors were purified from the latent ribonuclease fractions of porcine thyroid and liver and used to test the hypothesis that their inhibition of bovine pancreatic ribonuclease A is correctly described by tight-binding rather than Michaelis-Menton kinetics. Both proteins were found to act as slow, tight-binding inhibitors of the enzyme. These steady-state velocities also showed that both the thyroid and liver inhibitors were competitive inhibitors of bovine pancreatic ribonuclease A with Ki's of 0.1 and 0.4 nM, respectively. In contrast to interpretations based on Michaelis-Menton assumptions that show non-competitive inhibition, these results suggest that an enzyme:inhibitor:substrate complex does not exist.  相似文献   

14.
A general treatment of very tight-binding inhibition is described. It was applied to purified endogenous RNAase inhibitor from rat testis. This treatment discriminates among the different types of inhibition and allows for calculation of the inhibition parameters. When very tight-binding inhibitions are studied at similar molar concentrations of both enzyme and inhibitor, a further approach is required. This is also described and applied to the RNAase inhibitor. A Ki value of 3.2 x 10(-12) M was found for this inhibitor protein. On the basis of this result, it was considered inappropriate to classify this type of inhibitor in terms of competitive or non-competitive, as has been done for such inhibitors so far. Functional consequences of this analysis are discussed for the RNAase-RNAase inhibitor system.  相似文献   

15.
When two or more tight-binding inhibitors are present in an enzyme assay, the equation that relates the initial velocity v to the concentration of reactants cannot be written in an algebraically explicit form. Rather, for n inhibitors it is an implicit polynomial equation of degree n + 1 with respect to v. The complexity of the polynomial coefficients dramatically increases with each added inhibitor. Solving the transcendental rate equation by traditional methods of numerical mathematics has proven tedious because of the sensitivity of these methods to initial estimates and because of the existence of multiple roots. However, the equation can be rearranged into a convenient recursive form, one in which the velocity appears on both sides and the solution is found iteratively. The algebraic form of the recursive rate equation is remarkably simple and differs from the rate equation for classical rather than tight-binding inhibition only by an added term. The numerical stability and the speed of convergence were tested on the case of two competitive inhibitors. Initial estimates of velocity that spanned 12 orders of magnitude converged within five iterations. The velocities computed with the recursive method for a single tight-binding inhibitor were identical with the values predicted by the Morrison equation. The method is used to analyze experimental data for the inhibition of rat liver dihydrofolate reductase by mixtures of the anticancer drug methotrexate and its metabolic precursor form, methotrexate-alpha-aspartate (a prodrug).  相似文献   

16.
The equilibrium constant for the binding of a spectroscopically invisible ligand to its protein receptor can be determined in a competition experiment, by using a structural analog that contains a reporter group (fluorophor). A novel mathematical treatment of the multiple equilibria allows the analysis to be performed under tight-binding conditions. The equilibrium equation for mixtures of two mutually competitive tight-binding ligands can be expressed in a recursive form, a form in which the dependent variable appears on both sides and the solution is found iteratively. The algorithm is also applicable to the special case of weak binding, where the concentration of the bound ligand can be neglected in the mass balance. The fluorescence displacement method is demonstrated on the determination cyclophilin binding to cyclosporin A (CsA), in competition with its fluorescent derivative, [D-Lys(Dns)]8-CsA.  相似文献   

17.
Rezaie AR 《Biochemistry》2004,43(12):3368-3375
Recombinant tick anticoagulant peptide (rTAP) is a competitive slow- and tight-binding inhibitor of factor Xa (FXa) with a reported equilibrium dissociation constant (K(I)) of approximately 0.2 nM. The inhibitory characteristics and the high selectivity of rTAP for FXa are believed to arise from the ability of the inhibitor to specifically interact with the residues of both the active site as well as those remote from the active site pocket of the protease. To localize the rTAP-interactive sites on FXa, the kinetics of inhibition of wild-type and 18 different mutants of recombinant FXa by the inhibitor were studied by either a discontinuous assay method employing the tight-binding quadratic equation or a continuous assay method employing the slow-binding kinetic approach. It was discovered that K(I) values for the interaction of rTAP with four FXa mutants (Tyr(99) --> Thr, Phe(174) --> Asn, Arg(143) --> Ala, and a Na(+)-binding loop mutant in which residues 220-225 of FXa were replaced with the corresponding residues of thrombin) were elevated by 2-3 orders of magnitude for each mutant. Further studies revealed that the characteristic slow type of inhibition by rTAP was also eliminated for the mutants. These findings suggest that the interaction of rTAP with the P2-binding pocket, the autolysis loop, and the Na(+)-binding loop is primarily responsible for its high specificity of FXa inhibition by a slow- and tight-binding mechanism.  相似文献   

18.
The dynamical properties of polarons in organic molecular crystals are numerically studied in the framework of an one-dimensional Holstein-Peierls approach that includes lattice relaxation. Particularly, the present study is aimed at designing a tight-binding Hamiltonian that can address the charge transport mechanism in model oligoacene stacks. Our findings show that the definition of a particular oligoacene system depends strictly on the employed set of parameters. The usefulness of this methodology is highlighted by analyzing the polaron’s saturation velocity and, consequently, its stability in the presence of a damping term and substantially high electric field strengths. Importantly, these results may be useful for the designing of novel materials to be employed in the field of molecular electronics.  相似文献   

19.
Sixteen mutants which produce lactose repressors with enhanced operator affinities have been isolated. By deletion mapping, six of seven mutations mapped fall into a restricted region of the i gene which also is the location of some anomalous is (super-repressor) and some weak i?d mutations (Pfahl et al., 1974). In vivo and in vitro characterization of nine of the “tight-binding” repressors indicates that: (1) they cause 1.5- to 6-fold decreases in basal β-galactosidase specific activities relative to the parental Q wild-type repressor, and have up to 30-fold increases in operator affinity in vitro. (2) With a few exceptions, the tight-binding repressors show the same relative decreases in basal β-galactosidase specific activities for a wide range of operator types (o+ and oc). (3) With two exceptions, the tight-binding repressors show normal or nearly normal affinities for the inducer, isopropyl-β-d-thiogalactoside, although the concentrations of inducer needed to release various repressors from the o+ operator vary greatly.  相似文献   

20.
L M Abell  J J Villafranca 《Biochemistry》1991,30(25):6135-6141
A number of slow tight-binding inhibitors are known for glutamine synthetase that resemble the geometry of the tetrahedral intermediate formed during the enzyme-catalyzed condensation of gamma-glutamyl phosphate and ammonia. One of these inhibitors, phosphinothricin [L-2-amino-4-(hydroxymethyl-phosphinyl)butanoic acid], has been investigated by rapid kinetic methods. Phosphinothricin not only exhibits the kinetic properties of a slow tight-binding inhibitor but also undergoes phosphorylation during the course of the ATP-dependent inactivation. The acid lability of phosphinothricin phosphate enabled investigation of the kinetics of glutamine synthetase inactivation using rapid quench kinetic techniques. The rate-limiting step in the inhibition reaction is the binding of inhibitor (0.004-0.014 microM-1 s-1) and/or a conformational change associated with binding, which is several orders of magnitude slower than the binding of ATP. The association rate of phosphinothricin depends on which metal ion is bound to the enzyme (Mn2+ or Mg2+). With Mn2+ bound to glutamine synthetase the rate of association and the phosphorylation rate are faster than when Mg2+ is bound. The data are interpreted with use of a model in which the binding of a substrate analogue with a tetrahedral moiety enhances the phosphorylation rate of the reaction intermediate; however, the initial binding interaction is retarded because the enzyme has to bind a molecule that has a "transition-state" geometry rather than a ground-state substrate structure. During the course of the inactivation, progressively slower rates for binding and phosphoryl transfer were observed, indicating communication between active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号