首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
3-(4-Fluorophenyl)-N-((4-fluorophenyl)sulphonyl)acrylamide (FFSA) is a potential tubulin polymerisation inhibitor. In this article, a theoretical study of the binding between FFSA and tubulin in colchicine site was carried out by molecular docking, molecular dynamics (MD) simulation and binding free energy calculations. The docking calculations preliminarily indicate that there are three possible binding modes 1, 2 and 3; MD simulations and binding free energy calculations identify that binding mode 2 is the most favourable, with the lowest binding free energy of ? 29.54 kcal/mol. Moreover, our valuable results for the binding are as follows: the inhibitor FFSA is suitably located at the colchicine site of tubulin, where it not only interacts with residues Leu248β, Lys254β, Leu255β, Lys352β, Met259β and Val181a by hydrophilic interaction, but also interacts with Val181α and Thr179α by hydrogen bond interaction. These two factors are both essential for FFSA strongly binding to tubulin. These theoretical results help understanding the action mechanism and designing new compounds with higher affinity to tubulin.  相似文献   

2.
The interactions between β-lactamase inhibitory proteins (BLIPs) and β-lactamases have been used as model systems to understand the principles of affinity and specificity in protein-protein interactions. The most extensively studied tight binding inhibitor, BLIP, has been characterized with respect to amino acid determinants of affinity and specificity for binding β-lactamases. BLIP-II, however, shares no sequence or structural homology to BLIP and is a femtomolar to picomolar potency inhibitor, and the amino acid determinants of binding affinity and specificity are unknown. In this study, alanine scanning mutagenesis was used in combination with determinations of on and off rates for each mutant to define the contribution of residues on the BLIP-II binding surface to both affinity and specificity toward four β-lactamases of diverse sequence. The residues making the largest contribution to binding energy are heavily biased toward aromatic amino acids near the center of the binding surface. In addition, substitutions that reduce binding energy do so by increasing off rates without impacting on rates. Also, residues with large contributions to binding energy generally exhibit low temperature factors in the structures of complexes. Finally, with the exception of D206A, BLIP-II alanine substitutions exhibit a similar trend of effect for all β-lactamases, i.e., a substitution that reduces affinity for one β-lactamase usually reduces affinity for all β-lactamases tested.  相似文献   

3.
Two new ruthenium(II) complexes of Schiff base ligands (L) derived from cinnamaldehyde and ethylenediamine formulated as [Ru(L)(bpy)2](ClO4)2, where L1 = N,N’-bis(4-nitrocinnamald-ehyde)ethylenediamine and L2 = N,N’-bis(2-nitrocinnamaldehyde)-ethylenediamine for complex 1 and 2, respectively, were isolated in pure form. The complexes were characterized by physicochemical and spectroscopic methods. The electrochemical behavior of the complexes showed the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of the complexes with calf thymus DNA (CT-DNA) using absorption, emission spectral studies and electrochemical techniques have been used to determine the binding constant, Kb and the linear Stern–Volmer quenching constant, KSV. The results indicate that the ruthenium(II) complexes interact with CT-DNA strongly in a groove binding mode. The interactions of bovine serum albumin (BSA) with the complexes were also investigated with the help of absorption and fluorescence spectroscopy tools. Absorption spectroscopy proved the formation of a ground state BSA-[Ru(L)(bpy)2](ClO4)2 complex. The antibacterial study showed that the Ru(II) complexes (1 and 2) have better activity than the standard antibiotics but weak activity than the ligands.  相似文献   

4.
Abstract

The capacity to control quadruplex formation, especially in cancer cells, is captivating and entails a reasonable comprehension of the ligand-G-quadruplex binding. Herein, we report an iminopyrenyl-β-cyclodextrin conjugate interacting with duplex and G-quadrulex DNAs. In addition, the host: guest association of the established G-quadruplex binder, berberine, with the β-cyclodextrin derivative is studied employing 2-D ROESY. NMR, UV-visible, and fluorescence spectroscopic techniques are utilized to explore the β-cyclodextrin conjugate's interaction with the quadruplexes. The Binding constants are accounted for the association of the ligands to each of the DNAs viz., calf thymus DNA (duplex), kit22, telo24, and myc22 (quadruplexes). The modulation of the iminopyrenyl-β-cyclodextrin binding to the DNAs are observed when berberine is loaded in the host molecule. A vivid distinction between the interactions of the ligands with duplex and quadruplex structures is inferred. Berberine-loaded iminopyrenyl-β-cyclodextrin shows a higher affinity for binding to kit22.  相似文献   

5.
Human complement receptor type 2 (CR2 and CD21) is a cell membrane receptor, with 15 or 16 extracellular short consensus repeats (SCRs), that promotes B lymphocyte responses and bridges innate and acquired immunity. The most distally located SCRs, SCR1–2, mediate the interaction of CR2 with its four known ligands (C3d, EBV gp350, IFNα, and CD23). To ascertain specific interacting residues on CR2, we utilized NMR studies wherein gp350 and IFNα were titrated into 15N-labeled SCR1–2, and chemical shift changes indicative of specific inter-molecular interactions were identified. With backbone assignments made, the chemical shift changes were mapped onto the crystal structure of SCR1–2. With regard to gp350, the binding region of CR2 is primarily focused on SCR1 and the inter-SCR linker, specifically residues Asn11, Arg13, Ala22, Arg28, Ser32, Arg36, Lys41, Lys57, Tyr64, Lys67, Tyr68, Arg83, Gly84, and Arg89. With regard to IFNα, the binding is similar to the CR2-C3d interaction with specific residues being Arg13, Tyr16, Arg28, Ser42, Lys48, Lys50, Tyr68, Arg83, Gly84, and Arg89. We also report thermodynamic properties of each ligand-receptor pair determined using isothermal titration calorimetry. The CR2-C3d interaction was characterized as a two-mode binding interaction with Kd values of 0.13 and 160 μm, whereas the CR2-gp350 and CR2-IFNα interactions were characterized as single site binding events with affinities of 0.014 and 0.035 μm, respectively. The compilation of chemical binding maps suggests specific residues on CR2 that are uniquely important in each of these three binding interactions.  相似文献   

6.
The interaction of a series of phosphate diesters and triesters (1=diphenyl phosphate, 2=dimethyl phosphate, 3=bis(2-ethylhexyl) phosphate, 4=trimethyl phosphate, 5=methyldiphenyl phosphate, 6=triphenyl phosphate) with [Mg(15-crown-5)]2+ (15-crown-5=1,4,7,10,13-pentaoxocyclopentadecane) was studied as a simplified model for the interaction of aqueous Mg2+ ion with phosphate-containing biomolecules such as RNA. Using electrospray mass spectrometry, we confirm the formation of 1:1 adducts in the gas phase. Proton and 31P NMR titration data were used to construct binding isotherms, and a 1:1 binding equilibrium was fit to the isotherms at room temperature to estimate the binding affinities. The binding affinity data are consistent with ditopic coordination of neutral dialkyl phosphate ligands to the [Mg(15-crown-5)]2+ unit. This involves inner-sphere coordination to the Mg2+ via an oxygen atom, which is complemented by a weak hydrogen-bonding interaction with the crown ether ligand. Ditopic interaction is consistent with low-temperature NMR spectra showing four different configurations for 1 coordinated to [Mg(15-crown-5)]2+, which are interpreted in terms of hindered rotation around the Mg–Ophos bond. Thermochemical analysis of the binding affinity data suggests that the second-shell interaction contributes only about 1 kcal/mol to the binding free energy, so additional factors, such as steric constraints, must be operative to give a preferred phosphate orientation in this system. However, the experimental data do suggest that second-shell interactions contribute as much as 40% of the total binding energy, consistent with the pronounced ability of aqueous Mg2+ to form salt-bridges linking secondary and tertiary elements of RNA structure.Abbreviations OTf trifluoromethanesulfonate - ESI-MS electrospray mass spectrometry  相似文献   

7.
A combination of intrinsic fluorescence and circular dichroic (CD) spectroscopy has been used to characterize the complexes formed between bovine retinal arrestin and heparin or phytic acid, two ligands that are known to mimic the structural changes in arrestin attending receptor binding. No changes in the CD spectra were observed upon ligand binding, nor did the degree of tryptophan fluorescence quenching change significantly in the complexes. These data argue against any large-scale changes in protein secondary or tertiary structure accompanying ligand binding. The change in tyrosine fluorescence intensity was used to determine the dissociation constants for the heparin and phytic acid complexes of arrestin. The only change observed was a saturable diminution of tyrosine fluorescence signal from the protein. For both ligands, the data suggest two distinct binding interactions with the protein—a high-affinity interaction with K d between 200 and 300 nM, and a lower affinity interaction with K d between 2 and 8 M. Study of collisional quenching of tyrosine fluorescence in free arrestin and the ligand-replete complexes indicates that 10 of the 14 tyrosine residues of the protein are solvent-exposed in the free protein; this value drops to between 5 and 6 solvent-exposed residues in the high-affinity complexes of the two ligands. These data suggest that ligand binding leads to direct occlusion of between 4 and 5 tyrosine residues on the solvent-exposed surface of the protein, but not to any large-scale changes in protein structure. The large activation energy previously reported to be associated with arrestin–receptor interactions may therefore reflect localized movements of the N- and C-termini of arrestin, which are proposed to interact in the free protein through electrostatic interactions. Binding of the anionic ligands heparin, phytic acid, or phosphorylated rhodopsin may compete with the C-terminus of arrestin for these electrostatic interactions, thus allowing the C-terminus to swing out of the binding region.  相似文献   

8.
9.
The role of the primary amino groups of lysine sidechains in Ca2+ binding to calreticulin was evaluated by chemical modification of the amino group with 2,4,6-trinitrobenzenesulfonic acid (TNBS). TNBS binding to calreticulin could be described by two steps: (i) a fast reaction, with low affinity, and (ii) a slow reaction with a relatively high affinity. Inclusion of Ca2+ and/or Mg2+ decreased both the amount of TNBS bound to calreticulin and the apparent affinity constant of the slower reaction. In contrast, the properties of the faster reaction for TNBS binding were not sensitive to Ca2+ and/or Mg2+. Analysis of TNBS binding to the carboxyl-terminal (C-domain) and aminoterminal (N-domain) of calreticulin revealed that theC-domain andN-domain are responsible for the slow and fast component of the TNBS binding, respectively. In keeping with this, in the presence of Ca2+, TNBS binding to theC-domain was significantly reduced, whereas modification of theN-domain was unaffected. TNBS modification of calreticulin significantly decreased Ca2+ binding to the low affinity/high capacity Ca2+ binding site(s) which are localized to theC-domain but had no effect on the high affinity/low capacity Ca2+ binding localized to theN-domain.In theC-domain of calreticulin, which contains the low affinity/high capacity Ca2+ binding sites, acidic residues are interspersed at regular intervals with one or more positively charged lysine and arginine residues. Our results indicate that the aminogroups of the lysine sidechains in theC-domain of calreticulin have a role in the low affinity/high capacity Ca2+ binding that is characteristic of this region of the protein and which is proposed to contribute significantly to the capacity of the endoplasmic reticulum Ca2+ store. (Mol Cell Biochem130: 19–28, 1994)Abbreviations TNBS 2,4,6-Trinitrobenzenesulfonic Acid - GST Glutathione S-Transferase - SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis - EDTA Ethylenediaminetetraacetic Acid - EGTA Ethylene Glycol bis(-aminoethylether)-N,N,N,N-tetraacetic Acid - MOPS 4-Morpholinepropanesulfonic Acid  相似文献   

10.
Abstract

For efficient designing of metallodrugs, it is imperative to analyse the binding affinity of those drugs with drug-carrying serum albumins to comprehend their structure–activity correlation for biomedical applications. Here, cobalt(II) and cobalt(III) complexes comprising three phendione ligands, [Co(phendione)3]Cl2 (1) and [Co(phendione)3]Cl3 (2), where, phendione = 1,10-phenanthroline-5,6-dione, has been chosen to contrast the impact of their hydrophobicity and ionicity on binding with bovine serum albumin (BSA) through spectrophotometric titrations. The attained hydrophobicity values using octanol/water partition coefficient method manifested that complex 1 is more hydrophobic than complex 2, which could be attributed to lesser charge on its coordination sphere. The interaction of complexes 1 and 2 with BSA using steady state fluorescence studies revealed that these complexes quench the intrinsic fluorescence of BSA through static mechanism, and the extent of quenching and binding parameters are higher for complex 2. Further thermodynamics of BSA-binding studies revealed that complexes 1 and 2 interact with BSA through hydrophobic and hydrogen bonding/van der Waals interactions, respectively. Further, UV–visible absorption, circular dichroism and synchronous fluorescence studies confirmed the occurrence of conformational and microenvironmental changes in BSA upon binding with complexes 1 and 2. Molecular docking studies have also shown that complex 2 has a higher binding affinity towards BSA as compared to complex 1. This sort of modification of ionicity and hydrophobicity of metal complexes for getting desirable binding mode/strength with drug transporting serum albumins will be a promising pathway for designing active and new kind of metallodrugs for various biomedical applications.

Communicated by Ramaswamy H. Sarma  相似文献   

11.
The interactions of putative mu and delta selective ligands with [3H]D-ala2-D-leu5 enkephalin (DADLE) binding to mouse brain membranes were investigated. Computerized curve fitting of displacement curves performed at three different concentrations of 3H-DADLE indicated that a one site competitive model was sufficient to explain the interactions of leu-enkephalin (LE) and D-ser2-thr6-leucine enkephalin with 3H-DADLE binding. Similar experiments with morphine and morphiceptin were unique in that the multiple displacement curves crossed over one another. A two-site competitive model was required to adequately describe the interactions of these mu selective ligands with 3H-DADLE. This two-site model was one in which the inhibitor had higher affinity for the site labeled with lower affinity by 3H-DADLE. However, this two site model did not correctly predict the interaction of LE with 3H-DADLE in the presence of morphiceptin. These data indicate that: 1) putative mu and delta selective ligands do not bind to a common high affinity site; 2) mu selective ligands are not simple mixed inhibitors of a single site labeled by 3H-DADLE; and 3) competitive binding models may not explain the interaction of mu ligands with 3H-DADLE binding.  相似文献   

12.
Chemokine receptor 5 (CCR5) is an integral membrane protein that is utilized during human immunodeficiency virus type-1 entry into host cells. CCR5 is a G-protein coupled receptor that contains seven transmembrane (TM) helices. However, the crystal structure of CCR5 has not been reported. A homology model of CCR5 was developed based on the recently reported CXCR4 structure as template. Automated docking of the most potent (14), medium potent (37), and least potent (25) CCR5 antagonists was performed using the CCR5 model. To characterize the mechanism responsible for the interactions between ligands (14, 25, and 37) and CCR5, membrane molecular dynamic (MD) simulations were performed. The position and orientation of ligands (14, 25, and 37) were found to be changed after MD simulations, which demonstrated the ability of this technique to identify binding modes. Furthermore, at the end of simulation, it was found that residues identified by docking were changed and some new residues were introduced in the proximity of ligands. Our results are in line with the majority of previous mutational reports. These results show that hydrophobicity is the determining factor of CCR5 antagonism. In addition, salt bridging and hydrogen bond contacts between ligands (14, 25, and 37) and CCR5 are also crucial for inhibitory activity. The residues newly identified by MD simulation are Ser160, Phe166, Ser180, His181, and Trp190, and so far no site-directed mutagenesis studies have been reported. To determine the contributions made by these residues, additional mutational studies are suggested. We propose a general binding mode for these derivatives based on the MD simulation results of higher (14), medium (37), and lower (25) potent inhibitors. Interestingly, we found some trend for these inhibitors such as, salt bridge interaction between basic nitrogen of ligand and acidic Glu283 seemed necessary for inhibitory activity. Also, two aromatic pockets (pocket I – TM1-3 and pocket II – TM3-6) were linked by the central polar region in TM7, and the simulated inhibitors show important interactions with the Trp86, Tyr89, Tyr108, Phe112, Ile198, Tyr251, Leu255, and Gln280 and Glu283 residues. These results shed light on the usage of MD simulation to identify more stable, optimal binding modes of the inhibitors.  相似文献   

13.
Suggestions derived from a previous ligand-based ligand design approach and docking calculations aimed at finding compound with affinity toward Abl and molecular scaffolds previously untested as Abl inhibitors, led to the identification of commercially available N-(thiazol-2-yl)-2-thiophene carboxamide derivatives with affinity in a cell-free assay up to low nanomolar concentrations, significantly enhanced with respect to that of their parent compounds previously reported. In particular, among compounds of the Asinex database, molecular docking simulations guided the choice of high-affinity ligands, predicting their binding mode and their interaction pattern with the Abl catalytic binding site. Moreover, affinity of the new compounds was also rationalized in terms of their interactions with the enzyme.  相似文献   

14.
The mechanism and kinetics of the interactions between ligands and immobilized full‐length hepatitis C virus (HCV) genotype 1a NS3 have been characterized by SPR biosensor technology. The NS3 interactions for a series of NS3 protease inhibitors as well as for the NS4A cofactor, represented by a peptide corresponding to the sequence interacting with the enzyme, were found to be heterogeneous. It may represent interactions with two stable conformations of the protein. The NS3–NS4A interaction consisted of a high‐affinity (KD = 50 nM) and a low‐affinity (KD = 2 µM) interaction, contributing equally to the overall binding. By immobilizing NS3 alone or together with NS4A it was shown that all inhibitors had a higher affinity for NS3 in the presence of NS4A. NS4A thus has a direct effect on the binding of inhibitors to NS3 and not only on catalysis. As predicted, the mechanism‐based inhibitor VX 950 exhibited a time‐dependent interaction with a slow formation of a stable complex. BILN 2061 or ITMN‐191 showed no signs of time‐dependent interactions, but ITMN‐191 had the highest affinity of the tested compounds, with both the slowest dissociation (koff) and fastest association rate, closely followed by BILN 2061. The koff for the inhibitors correlated strongly with their NS3 protease inhibitory effect as well as with their effect on replication of viral proteins in replicon cell cultures, confirming the relevance of the kinetic data. This approach for obtaining kinetic and mechanistic data for NS3 protease inhibitor and cofactor interactions is expected to be of importance for understanding the characteristics of HCV NS3 functionality as well as for anti‐HCV lead discovery and optimization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The homologous Kunitz inhibitor proteins, bovine pancreatic trypsin inhibitor (BPTI) and dendrotoxin I (DTX-I), interact with large conductance Ca2+-activated K+ channels (maxi-KCa) by binding to an intracellular site outside of the pore to produce discrete substate events. In contrast, certain homologues of the Shaker ball peptide produce discrete blocking events by binding within the ion conduction pathway. In this study, we investigated ligand interactions of these positively charged peptide molecules by analysis of single maxi-KCa channels in planar bilayers recorded in the presence of DTX-I and BPTI, or DTX-I and a high-affinity homologue of ball peptide. Both DTX-I (K d, 16.5 nM) and BPTI (K d, 1,490 nM) exhibit one-site binding kinetics when studied alone; however, records in the presence of DTX-I plus BPTI demonstrate simultaneous binding of these two molecules. The affinity of BPTI (net charge, +6) decreases by 11.7-fold (K d, 17,500 nM) when DTX-I (net charge, +10) is bound and, conversely, the affinity of DTX-I decreases by 10.8-fold (K d, 178 nM) when BPTI is bound. The ball peptide homologue (BP; net charge, +6) exhibits high blocking affinity (K d, 7.2 nM) at a single site when studied alone, but has 8.0-fold lower affinity (K d, 57 nM) for blocking the DTX-occupied channel. The affinity of DTX-I likewise decreases by 8.4-fold (K d, 139 nM) when BP is bound. These results identify two types of negatively coupled ligand–ligand interactions at distinct sites on the intracellular surface of maxi-KCa channels. Such antagonistic ligand interactions explain how the binding of BPTI or DTX-I to four potentially available sites on a tetrameric channel protein can exhibit apparent one-site kinetics. We hypothesize that negatively coupled binding equilibria and asymmetric changes in transition state energies for the interaction between DTX-I and BP originate from repulsive electrostatic interactions between positively charged peptide ligands on the channel surface. In contrast, there is no detectable binding interaction between DTX-I on the inside and tetraethylammonium or charybdotoxin on the outside of the maxi-KCa channel.  相似文献   

16.
The investigation of the sugar–metal ion interactions remains one of the main objectives of carbohydrate coordination chemistry because the interactions between metal ions and carbohydrates are involved in many biochemical processes. The potential binding interaction between a five-coordinate dinuclear cobalt(II) complex, Na2[Co2(tcdc)(μ-OAc)] (1) [Na5tcdc = Sodium-N,N,N′,N′-tetrakis(sodium carboxylate methyl)-2,6-diaminocresolate] and biologically important sugar substrates (d-glucose, d-xylose, and d-mannose) has been studied. In alkaline media, the complex 1 shows an excellent chelating ability toward these sugar substrates. A combined approach of FTIR and UV–vis spectroscopic investigations shows that the complex forms a 1:1 complex/substrate-bound product. UV–vis spectra indicate a significant blue-shift of the absorption maximum of metal complex during carbohydrate coordination highlighting the sugar binding ability of complex 1. The apparent binding constants of the substrate-bound cobalt(II) complexes have been determined from the UV–vis titration experiments.  相似文献   

17.
Soluble epoxide hydrolase (sEH) is a promising new target for treating hypertension and inflammation. Considerable efforts have been devoted to develop novel inhibitors. In this study, the binding modes and interaction mechanisms of a series of adamantyl-based 1,3-disubstituted urea inhibitors were investigated by molecular docking, molecular dynamics simulations, binding free energy calculations, and binding energy decomposition analysis. Based on binding affinity, the most favorable binding mode was determined for each inhibitor. The calculation results indicate that the total binding free energy (ΔGTOT, the sum of enthalpy ΔGMM-GB/SA, and entropy ?TΔS) presents a good correlation with the experimental inhibitory activity (IC50, r2?=?.99). The van der Waals energy contributes most to the total binding free energy (ΔGTOT). A detailed discussion on the interactions between inhibitors and those residues located in the active pocket is made based on hydrogen bond and binding modes analysis. According to binding energy decomposition, the residues Asp333 and Trp334 contribute the most to binding free energy in all systems. Furthermore, Hip523 plays a major role in determining this class of inhibitor-binding orientations. Combined with the results of hydrogen bond analysis and binding free energy, we believe that the conserved hydrogen bonds play a role only in anchoring the inhibitors to the exact site for binding and the number of hydrogen bonds may not directly relate to the binding free energy. The results we obtained will provide valuable information for the design of high potency sEH inhibitors.  相似文献   

18.
Abstract

Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis (M.tb) or tubercule bacillus, and H37Rv is the most studied clinical strain. The recent development of resistance to existing drugs is a global health-care challenge to control and cure TB. Hence, there is a critical need to discover new drug targets in M.tb. The members of peptidoglycan biosynthesis pathway are attractive target proteins for antibacterial drug development. We have performed in silico analysis of M.tb MraY (Rv2156c) integral membrane protein and constructed the three-dimensional (3D) structure model of M.tb MraY based on homology modeling method. The validated model was complexed with antibiotic muraymycin D2 (MD2) and was used to generate structure-based pharmacophore model (e-pharmacophore). High-throughput virtual screening (HTVS) of Asinex database and molecular docking of hits was performed to identify the potential inhibitors based on their mode of interactions with the key residues involved in M.tb MraY–MD2 binding. The validation of these molecules was performed using molecular dynamics (MD) simulations for two best identified hit molecules complexed with M.tb MraY in the lipid bilayer, dipalmitoylphosphatidyl-choline (DPPC) membrane. The results indicated the stability of the complexes formed and retained non-bonding interactions similar to MD2. These findings may help in the design of new inhibitors to M.tb MraY involved in peptidoglycan biosynthesis.  相似文献   

19.
Abstract

The over-activation of Ras/mitogen-activated protein kinase (MAPK) signaling pathway associated with a variety of cancers is usually related with abnormal activation of Src-homology 2 domain-containing protein tyrosine phosphatase (SHP2). For this purpose, SHP2 has attracted extensive interest as a potential target for cancer treatment. RMC-4550, as a newly developed selective inhibitor of SHP2, possesses an overwhelming advantage over the previous generation inhibitor SHP099 in terms of in vitro activity. However, the binding mode of SHP2 with RMC-4550 and the reason for the high efficiency of RMC-4550 as SHP2 inhibitor at molecular level are still unclear. Therefore, in this study, the binding mode of RMC-4550 with SHP2 and the superiorities of RMC-4550 as inhibitor at binding affinity and dynamic interactive behavior with SHP2 were probed by molecular docking and molecular dynamics (MD) simulations. By comparing the results of molecular docking, it was found that SHP2 formed more tight interaction with RMC-4550 than that with SHP099. Subsequently, a series of post-dynamic analyses on three simulation trajectories (SHP2WT, SHP2SHP099 and SHP2RMC-4550) were performed and found that the SHP2 protein bound with RMC-4550 maintained a firmer interaction between N-Src-homology 2 (N-SH2) and PTP domain throughout the MD simulation, leading to a more stable protein conformation. The finding here provides new clues for the design of SHP2 inhibitor against the over-activation of Ras/MAPK pathway.

Communicated by Ramaswamy H. Sarma  相似文献   

20.
The anticoagulant serpin, protein Z-dependent protease inhibitor (ZPI), circulates in blood as a tight complex with its cofactor, protein Z (PZ), enabling it to function as a rapid inhibitor of membrane-associated factor Xa. Here, we show that N,N′-dimethyl-N-(acetyl)-N′-(7-nitrobenz-3-oxa-1,3-diazol-4-yl)ethylenediamine (NBD)-fluorophore-labeled K239C ZPI is a sensitive, moderately perturbing reporter of the ZPI-PZ interaction and utilize the labeled ZPI to characterize in-depth the thermodynamics and kinetics of wild-type and variant ZPI-PZ interactions. NBD-labeled K239C ZPI bound PZ with ∼3 nm KD and ∼400% fluorescence enhancement at physiologic pH and ionic strength. The NBD-ZPI-PZ interaction was markedly sensitive to ionic strength and pH but minimally affected by temperature, consistent with the importance of charged interactions. NBD-ZPI-PZ affinity was reduced ∼5-fold by physiologic calcium levels to resemble NBD-ZPI affinity for γ-carboxyglutamic acid/EGF1-domainless PZ. Competitive binding studies with ZPI variants revealed that in addition to previously identified Asp-293 and Tyr-240 hot spot residues, Met-71, Asp-74, and Asp-238 made significant contributions to PZ binding, whereas Lys-239 antagonized binding. Rapid kinetic studies indicated a multistep binding mechanism with diffusion-limited association and slow complex dissociation. ZPI complexation with factor Xa or cleavage decreased ZPI-PZ affinity 2–7-fold by increasing the rate of PZ dissociation. A catalytic role for PZ was supported by the correlation between a decreased rate of PZ dissociation from the K239A ZPI-PZ complex and an impaired ability of PZ to catalyze the K239A ZPI-factor Xa reaction. Together, these results reveal the energetic basis of the ZPI-PZ interaction and suggest an important role for ZPI Lys-239 in PZ catalytic action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号