首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conduction-based modeling of the biofilm anode of a microbial fuel cell   总被引:1,自引:0,他引:1  
The biofilm of a microbial fuel cell (MFC) experiences biofilm-related (growth and mass transport) and electrochemical (electron conduction and charger-transfer) processes. We developed a dynamic, one-dimensional, multi-species model for the biofilm in three steps. First, we formulated the biofilm on the anode as a "biofilm anode" with the following two properties: (1) The biofilm has a conductive solid matrix characterized by the biofilm conductivity (kappa(bio)). (2) The biofilm matrix accepts electrons from biofilm bacteria and conducts the electrons to the anode. Second, we derived the Nernst-Monod expression to describe the rate of electron-donor (ED) oxidation. Third, we linked these components using the principles of mass balance and Ohm's law. We then solved the model to study dual limitation in biofilm by the ED concentration and local potential. Our model illustrates that kappa(bio) strongly influences the ED and current fluxes, the type of limitation in biofilm, and the biomass distribution. A larger kappa(bio) increases the ED and current fluxes, and, consequently, the ED mass-transfer resistance becomes significant. A significant gradient in ED concentration, local potential, or both can develop in the biofilm anode, and the biomass actively respires only where ED concentration and local potential are high. When kappa(bio) is relatively large (i.e., > or =10(-3) mS cm(-1)), active biomass can persist up to tens of micrometers away from the anode. Increases in biofilm thickness and accumulation of inert biomass accentuate dual limitation and reduce the current density. These limitations can be alleviated with increases in the specific detachment rate and biofilm density.  相似文献   

2.
彭显  李继遥  徐欣 《生物工程学报》2017,33(9):1369-1375
细菌生物被膜是细菌持续性致病的重要机制。研究细菌生物被膜的形成和发展可为顽固性细菌感染防治提供新的思路与策略。环二腺苷酸c-di-AMP(Cyclic diadenosine monophosphate)是继c-di-GMP之后在细菌中新发现的一种核苷酸第二信使分子。研究发现,c-di-AMP参与调节细菌多种生理功能,包括细菌生长代谢、生物被膜形成、细胞壁的合成以及细菌毒力因子等。本文综述了c-di-AMP参与调控细菌生物被膜形成的不同方式及其分子机制。鉴于c-di-AMP在调控细菌生物被膜中的重要性,其可作为抗细菌生物被膜感染新药研发的潜在靶点。  相似文献   

3.
Biofilms are communities of bacterial cells encased in a self-produced polymeric matrix that exhibit high tolerance toward environmental stress. Despite the plethora of research on biofilms, most P. aeruginosa biofilm models are cultured on a solid–liquid interface, and the longitudinal growth characteristics of P. aeruginosa biofilm are unclear. This study demonstrates the real-time and noninvasive monitoring of biofilm growth using a novel dual-chamber microfluidic device integrated with electrochemical detection capabilities to monitor pyocyanin (PYO). The growth of P. aeruginosa biofilms on the air–liquid interface (ALI) was monitored over 48 h, and its antibiotic susceptibility to 6 h exposure of 50, 400, and 1600 µg/ml of ciprofloxacin solutions was analyzed. The biofilm was treated directly on its surface and indirectly from the substratum by delivering the CIP solution to the top or bottom chamber of the microfluidic device. Results showed that P. aeruginosa biofilm developed on ALI produces PYO continuously, with the PYO production rate varying longitudinally and peak production observed between 24 and 30 h. In addition, this current study shows that the amount of PYO produced by the ALI biofilm is proportional to its viable cell numbers, which has not been previously demonstrated. Biofilm treated with ciprofloxacin solution above 400 µg/ml showed significant PYO reduction, with biofilms being killed more effectively when treatment was applied to their surfaces. The electrochemical measurement results have been verified with colony-forming unit count results, and the strong correlation between the PYO electrical signal and the viable cell number highlights the usefulness of this approach for fast and low-cost ALI biofilm study and antimicrobial tests.  相似文献   

4.
Biofilm mechanical properties are essential in quantifying the rate of microbial detachment, a key process in determining the function and structure of biofilm systems. Although properties such as biofilm elastic moduli, yield stress and cohesive strength have been studied before, a wide range of values for the biofilm Young's modulus that differ by several orders of magnitude are reported in the literature. In this article, we use experimental data reported in Stoodley et al. [Stoodley et al., Biotechnol Bioeng (1999): 65(1):83-92] and present a methodology for the calculation of Young's modulus, which partially explains the large difference between the values reported in the literature.  相似文献   

5.
Nontypeable Haemophilus influenzae (NTHi), an important human respiratory pathogen, frequently causes biofilm infections. Currently, resistance of bacteria within the biofilm to conventional antimicrobials poses a major obstacle to effective medical treatment on a global scale. Novel agents that are effective against NTHi biofilm are therefore urgently required. In this study, a series of natural and synthetic chalcones with various chemical substituents were evaluated in vitro for their antibiofilm activities against strong biofilm‐forming strains of NTHi. Of the test chalcones, 3‐hydroxychalcone (chalcone 8 ) exhibited the most potent inhibitory activity, its mean minimum biofilm inhibitory concentration (MBIC50) being 16 μg/mL (71.35 μM), or approximately sixfold more active than the reference drug, azithromycin (MBIC50 419.68 μM). The inhibitory activity of chalcone 8 , which is a chemically modified chalcone, appeared to be superior to those of the natural chalcones tested. Significantly, chalcone 8 inhibited biofilm formation by all studied NTHi strains, indicating that the antibiofilm activities of this compound occur across multiple strong‐biofilm forming NTHi isolates of different clinical origins. According to antimicrobial and growth curve assays, chalcone 8 at concentrations that decreased biofilm formation did not affect growth of NTHi, suggesting the biofilm inhibitory effect of chalcone 8 is non‐antimicrobial. In terms of structure–activity relationship, the possible substituent on the chalcone backbone required for antibiofilm activity is discussed. These findings indicate that 3‐hydroxychalcone (chalcone 8 ) has powerful antibiofilm activity and suggest the potential application of chalcone 8 as a new therapeutic agent for control of NTHi biofilm‐associated infections.  相似文献   

6.
The limitation of pH inside electrode‐respiring biofilms is a well‐known concept. However, little is known about how pH and redox potential are affected by increasing current inside biofilms respiring on electrodes. Quantifying the variations in pH and redox potential with increasing current is needed to determine how electron transfer is tied to proton transfer within the biofilm. In this research, we quantified pH and redox potential variations in electrode‐respiring Geobacter sulfurreducens biofilms as a function of respiration rates, measured as current. We also characterized pH and redox potential at the counter electrode. We concluded that (1) pH continued to decrease in the biofilm through different growth phases, showing that the pH is not always a limiting factor in a biofilm and (2) decreasing pH and increasing redox potential at the biofilm electrode were associated only with the biofilm, demonstrating that G. sulfurreducens biofilms respire in a unique internal environment. Redox potential inside the biofilm was also compared to the local biofilm potential measured by a graphite microelectrode, where the tip of the microelectrode was allowed to acclimatize inside the biofilm. Biotechnol. Bioeng. 2012; 109: 2651–2662. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Biofilm formation by pathogenic microorganisms has been a tremendous challenge for antimicrobial therapies due to various factors. The biofilm matrix sequesters bacterial cells from the exterior environment and therefore prevents antimicrobial agents from reaching the interior. In addition, biofilm surface extracellular polymeric substances can absorb antimicrobial agents and thus reduce their bioavailability. To conquer these protection mechanisms, liposomes have been developed into a drug delivery system for antimicrobial agents against biofilm-mediated infections. The unique characteristics of liposomes, including versatility for cargoes, target-specificity, nonimmunogenicity, low toxicity, and biofilm matrix-/cell membrane-fusogenicity, remarkably improve the effectiveness of antimicrobial agents and minimize recurrence of infections. This review summarizes current development of liposomal carriers for biofilm therapeutics, presents evidence in their practical applications and discusses their potential limitations.  相似文献   

8.
细菌生物被膜的形成与其致病性、耐药性密切相关,在许多由细菌导致的慢性、亚慢性感染中发挥着重要作用。动物模型广泛应用于细菌生物被膜相关感染的研究中,为其致病机理和控制策略的探究提供了强有力的科学工具。因此,本文系统阐述了哺乳类(鼠、兔、猪等)和非哺乳类(黑腹果蝇、斑马鱼、秀丽隐杆线虫等)动物模型在细菌生物被膜相关研究中的应用,并对动物模型在细菌生物被膜研究中的应用前景进行了展望,以期为研究由生物被膜导致的相关感染而选择理想动物模型提供理论支撑,从而对生物被膜感染导致的潜在危害进行防控。  相似文献   

9.
Corrosion causes dramatic economic loss. Currently widely used corrosion control strategies have disadvantages of being expensive, subject to environmental restrictions, and sometimes inefficient. Studies show that microbial corrosion inhibition is actually a common phenomenon. The present review summarizes recent progress in this novel strategy: corrosion control using beneficial bacteria biofilms. The possible mechanisms may involve: (1) removal of corrosive agents (such as oxygen) by bacterial physiological activities (e.g., aerobic respiration), (2) growth inhibition of corrosion-causing bacteria by antimicrobials generated within biofilms [e.g., sulfate-reducing bacteria (SRB) corrosion inhibition by gramicidin S-producing Bacillus brevis biofilm], (3) generation of protective layer by biofilms (e.g., Bacillus licheniformis biofilm produces on aluminum surface a sticky protective layer of γ-polyglutamate). Successful utilization of this novel strategy relies on advances in study at the interface of corrosion engineering and biofilm biology.  相似文献   

10.
生物膜,也称为生物被膜,是指附着于有生命或无生命物体表面被细菌胞外大分子包裹的有组织的细菌群体。与浮游菌相比,生物膜内的细菌对抗生素的耐受性提高了10–1000倍,是造成目前细菌耐药的主要原因之一。作为一种新型抗菌制剂,抗菌肽的使用为生物膜感染的治疗提供了一种新的思路和手段。抗菌肽在抑制生物膜形成、杀灭生物膜内细菌以及消除成熟生物膜的过程中发挥了独特的优势。文中分析了近30年的数据,从细菌生物膜的结构入手,对抗菌肽可能的抗生物膜机理进行了综述,以期为抗菌肽临床治疗生物膜感染提供一定参考。  相似文献   

11.
The force-deflection and removal characteristics of bacterial biofilm were measured by two different techniques before and after chemical, or enzymatic, treatment. The first technique involved time lapse imaging of a biofilm grown in a capillary flow cell and subjected to a brief shear stress challenge imparted through increased fluid flow. Biofilm removal was determined by calculating the reduction in biofilm area from quantitative analysis of transmission images. The second technique was based on micro-indentation using an atomic force microscope. In both cases, biofilms formed by Staphylococcus epidermidis were exposed to buffer (untreated control), urea, chlorhexidine, iron chloride, or DispersinB. In control experiments, the biofilm exhibited force-deflection responses that were similar before and after the same treatment. The biofilm structure was stable during the post-treatment shear challenge (1% loss). Biofilms treated with chlorhexidine became less deformable after treatment and no increase in biomass removal was seen during the post-treatment shear challenge (2% loss). In contrast, biofilms treated with urea or DispersinB became more deformable and exhibited significant biofilm loss during the post-treatment flow challenge (71% and 40%, respectively). During the treatment soak phase, biofilms exposed to urea swelled. Biofilms exposed to iron chloride showed little difference from the control other than slight contraction during the treatment soak. These observations suggest the following interpretations: (1) chemical or enzymatic treatments, including those that are not frankly antimicrobial, can alter the cohesion of bacterial biofilm; (2) biocidal treatments (e.g., chlorhexidine) do not necessarily weaken the biofilm; and (3) biofilm removal following treatment with agents that make the biofilm more deformable (e.g., urea, DispersinB) depend on interaction between the moving fluid and the biofilm structure. Measurements such as those reported here open the door to development of new technologies for controlling detrimental biofilms by targeting biofilm cohesion rather than killing microorganisms.  相似文献   

12.
Staphylococcus epidermidis is a significant nosocomial pathogen in predisposed hosts because of its capability of forming a biofilm on indwelling medical devices. The initial stage of biofilm formation has a key role in S. epidermidis abiotic surface colonization. Recently, many strategies have been developed to create new anti-biofilm surfaces able to control bacterial adhesion mechanisms. In this work, the self-assembled amphiphilic layers formed by two fungal hydrophobins (Vmh2 and Pac3) have proven to be able to reduce the biofilm formed by different strains of S. epidermidis on polystyrene surfaces. The reduction in the biofilm thickness on the coated surfaces and the preservation of cell vitality have been demonstrated through confocal laser scanning microscope analysis. Moreover, the anti-biofilm efficiency of the self-assembled layers on different medically relevant materials has also been demonstrated using a CDC biofilm reactor.  相似文献   

13.
Abstract

Much current research is focused on preventing and controlling the natural process of colonization by marine organisms of surfaces submerged in seawater. Previously, the authors’ laboratory has reported the synthesis and the full physico-chemical characterization of homopolymers obtained from 1-ferrocenylmethyl methacrylate (FMMA), 2-(ferrocenylmethoxy)ethyl methacrylate (FMOEMA), and 3-(ferrocenylmethoxy)propyl methacrylate (FMOPMA). Here, the bacterial anti-adhesion activity of these homopolymers (pFMMA, pFMOEMA and pFMOPMA) is reported when stimulated in 96-well microplates containing a printed electrochemical cell in each well. Polymers were deposited on the printed carbon working electrode of each well in two columns each comprising eight wells. Their electrochemical anti-adhesion properties were evaluated by inoculating a marine biofilm forming bacterial strain, Pseudoalteramonas lipolytica, in each well and then applying recurrent scans for 15?h. The results revealed an intrinsic anti-adhesion activity of all the polymers. This activity was amplified by a factor of 10 when potential recurrent scans were applied.  相似文献   

14.
Biofilms as complex microbial communities attached to surfaces pose several challenges in different sectors, ranging from food and healthcare to desalination and power generation. The biofilm mode of growth allows microorganisms to survive in hostile environments and biofilm cells exhibit distinct physiology and behaviour in comparison with their planktonic counterparts. They are ubiquitous, resilient and difficult to eradicate due to their resistant phenotype. Several chemical‐based cleaning and disinfection regimens are conventionally used against biofilm‐dwelling micro‐organisms in vitro. Although such approaches are generally considered to be effective, they may contribute to the dissemination of antimicrobial resistance and environmental pollution. Consequently, advanced green technologies for biofilm control are constantly emerging. Disinfection using nonthermal plasmas (NTPs) is one of the novel strategies having a great potential for control of biofilms of a broad spectrum of micro‐organisms. This review discusses several aspects related to the inactivation of biofilm‐associated bacteria and fungi by different types of NTPs under in vitro conditions. A brief introduction summarizes prevailing methods in biofilm inactivation, followed by introduction to gas discharge plasmas, active plasma species and their inactivating mechanism. Subsequently, significance and aspects of NTP inactivation of biofilm‐associated bacteria, especially those of medical importance, including opportunistic pathogens, oral pathogenic bacteria, foodborne pathogens and implant bacteria, are discussed. The remainder of the review discusses majorly about the synergistic effect of NTPs and their activity against biofilm‐associated fungi, especially Candida species.  相似文献   

15.
A fundamental requirement for the understanding and control of biofilms is the continuous nondestructive monitoring of biofilm processes. This paper reviews research analytical techniques that monitor biofilm processes in a continuous nondestructive manner and that could also be modified for industrial applications. To be considered continuous and nondestructive for the purpose of this review a technique must: (a) function in an aqueous system; (b) not require sample removal; (c) minimize signal from organisms or contaminants in the bulk phase; and (d) provide real-time data. Various microscopic, spectrochemical, electrochemical, and piezoelectrical analysis methods fulfill these criteria. These techniques monitor the formation of biofilms, the physiology of the microorganisms within biofilms, and/or the interaction of the biofilms with their environment. It is hoped that this review will stimulate development and use of biofilm monitoring techniques in industrial and environmental settings.  相似文献   

16.
细菌依其生存的环境不同能够在生物薄膜和浮游细菌两种生存形式之间转换。细菌生物薄膜的形成导致对抗生素治疗的低敏感性,是慢性感染过程中的重要因素。细菌生物薄膜形成过程涉及多种因素,相当部分已被证实为抑制生物薄膜形成的潜在靶点。本文主要就近几年抑制生物薄膜形成的靶点筛选作一介绍。  相似文献   

17.
Probiotics have been widely publicized in the general press and the consumer media. Knowledge of the existence of “probiotics” is commonplace, and the effectiveness of probiotic therapy has been well reported in the medical literature. However, even though most published dental studies have reported positive results, the dental profession has not yet accepted the use of probiotic therapy as an adjunct for preventive dental care. This review article discusses published and current research into the applications of probiotics along with diagnostic testing of the oral biofilm. Probiotic therapy appears to be generally safe and effective in modifying with beneficial bacteria the oral biofilm and thereby reducing the effects of pathogenic oral bacteria. In this review, some examples of current oral probiotic research are discussed along with reference to the potential application of diagnostic testing of the oral biofilm for the presence of oral pathogens as a precursor to initiation of specific probiotic therapy. Dental professionals should be actively investigating this potentially very useful therapeutic measure for the benefit of their patients.  相似文献   

18.
The diagnosis of biofilms continues to be a challenge, and there is no standardized protocol for such a diagnosis in clinical practice. In addition, some proposed methodologies are expensive to require significant amounts of time and a high number of trained staff, making them impracticable for clinical practice. In recent years, mass spectrophotometry/matrix-assisted laser desorption ionization time of flight (MALDI-TOF) has been applied it in biofilm studies. However, due to several problems and limitations of the technique, MALDI-TOF is far from being the gold standard for identifying biofilm formation. The omics analysis may prove to be a promising strategy for the diagnosis of biofilms in clinical laboratories since it allows the identification of pathogens in less time than needed for conventional techniques and in a more specific manner. However, omic tools are expensive and require qualified technical expertise, and an analysis of the data obtained needs to be careful not to neglect subpopulations in the biofilm. More studies must therefore be developed for creating a protocol that guarantees rapid biofilm identification, ensuring greater chances of success in infection control. This review discusses the current methods of microbial biofilm detection and future perspectives for its diagnosis in clinical practice.  相似文献   

19.
AIMS: To characterize bacterial populations and their activities within a microbial fuel cell (MFC), using cultivation-independent and cultivation approaches. METHODS AND RESULTS: Electron microscopic observations showed that the fuel cell electrode had a microbial biofilm attached to its surface with loosely associated microbial clumps. Bacterial 16S rRNA gene libraries were constructed and analysed from each of four compartments within the fuel cell: the planktonic community; the membrane biofilm; bacterial clumps (BC) and the anode biofilm. Results showed that the bacterial community structure varied significantly between these compartments. It was observed that Gammaproteobacteria phylotypes were present at higher numbers within libraries from the BC and electrode biofilm compared with other parts of the fuel cell. Community structure of the MFC determined by analyses of bacterial 16S rRNA gene libraries and anaerobic cultivation showed excellent agreement with community profiles from denaturing gradient gel electrophoresis (DGGE) analysis. CONCLUSIONS: Members of the family Enterobacteriaceae, such as Klebsiella sp. and Enterobacter sp. and other Gammaproteobacteria with Fe(III)-reducing and electrochemical activity had a significant potential for energy generation in this system. SIGNIFICANCE AND IMPACT OF THE STUDY: This study has shown that electrochemically active bacteria can be enriched using an electrochemical fuel cell.  相似文献   

20.
An important role has been recently reported for bacterial biofilm in the pathophysiology of chronic diseases, such as chronic rhinosinusitis (CRS). CRS, affecting sinonasal mucosa, is a persistent inflammatory condition with a high prevalence around the world. Although the exact pathological mechanism of this disease has not been elicited yet, biofilm formation is known to lead to a more significant symptom burden and major objective clinical indicators. The high prevalence of multidrug-resistant bacteria has severely restricted the application of antibiotics in recent years. Furthermore, systemic antibiotic therapy, on top of its insufficient concentration to eradicate bacteria in the sinonasal biofilm, often causes toxicity, antibiotic resistance, and an effect on the natural microbiota, in patients. Thus, coming up with alternative therapeutic options instead of systemic antibiotic therapy is emphasized in the treatment of bacterial biofilm in CRS patients. The use of topical antibiotic therapy and antibiotic eluting sinus stents that induce higher antibiotic concentration, and decrease side effects could be helpful. Besides, recent research recognized that various natural products, nitric oxide, and bacteriophage therapy, in addition to the hindered biofilm formation, could degrade the established bacterial biofilm. However, despite these improvements, new antibacterial agents and CRS biofilm interactions are complicated and need extensive research. Finally, most studies were performed in vitro, and more preclinical animal models and human studies are required to confirm the collected data. The present review is specifically discussing potential therapeutic strategies for the treatment of bacterial biofilm in CRS patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号