首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms of laser action on bacteria are not adequately understood. Here, an attempt has been made to study the fluctuation in ATP (adenosine triphosphate) concentration following laser irradiation from a pulsed Nd:YAG laser on a marine biofilm-forming bacterium Pseudoalteromonas carrageenovora. A stationary phase bacterial suspension (density 10(7-8) ml-1) was exposed to pulsed laser irradiations at a fluence of 0.1 J cm-2 (pulse width 5 ns, repetition rate 10 Hz) for different durations, ranging from 2 s to 15 min. The total viable count (TVC) and ATP concentration of the irradiated samples were determined immediately after the laser irradiation. While the maximum reduction in the TVC observed with respect to the control was 59% immediately after 15 min irradiation, the ATP concentration showed a reduction of about 86% for the same duration. The ATP concentration showed an abrupt reduction from 3 min of laser irradiation and continued to reduce significantly with increasing duration of irradiation. Thus, 3 min irradiation at a fluence of 0.1 J cm-2 is considered as an approximate threshold for ATP production in this bacterium. As the decreased level of ATP production continued, bacterial mortality resulted. The reduction in ATP production could be due to damage caused by the laser irradiations on bacterial metabolic processes such as cellular respiration.  相似文献   

2.

The impact of pulsed laser irradiation on the marine biofilm forming bacterium Pseudoalteromonas carrageenovora was investigated in the laboratory by monitoring mortality and the post-irradiation growth pattern. The impact of laser irradiation on bacterial mortality increased with the duration of irradiation. Laser irradiation at 532 nm (0.1 J cm m 2 ) for 15 min resulted in a 53% cell mortality immediately after irradiation. However, the impact after a period of 5 h (delayed impact) was more severe. The growth pattern of irradiated samples showed a prolonged lag phase compared to the reference, due to a reduction in total viable counts (TVC) in the irradiated samples. Nucleic acid staining is suggested to be a promising technique for monitoring laser inflicted bacterial mortality. Thus, the results suggest that laser irradiation could be considered as an alternative technique to reduce the number of biofilm forming bacteria and thereby biofilm formation on hard surfaces.  相似文献   

3.

A flow cytometry system was used to evaluate the impact of pulsed laser irradiations from an Nd:YAG laser on two marine coastal water diatoms, Chaetoceros gracilis and Skeletonema costatum. Three flow speeds, i.e. 9, 18 and 27 ml minm 1 and three laser fluences, i.e. 0.025, 0.05 and 0.1 J cmm 2 pulsem 1 were tested during this study. The reduction in cell density and chlorophyll a (chl a) concentrations were monitored by reference to non-irradiated samples as controls. Upon irradiation, the cell density and the chl a concentrations became reduced significantly compared to the control (one way ANOVA p <0.001 for the cell density in both the species and p <0.05 for chl a concentrations in both species). A maximum mortality of 0.77 log10 (about 83%) for C. gracilis and 0.68 log10 (about 78%) for S. costatum was observed at 9 ml minm 1 flow speed and 0.1 J cmm 2 laser fluence. The maximum reduction observed in the chl a concentration was about 26% (control 0.413 and sample 0.306 mg mlm 1) for C. gracilis and 27% (control 0.222 and sample 0.16 mg mlm 1) for S. costatum, when the flow rate was 9 ml minm 1 and the fluence 0.1 J cmm 2. In general, mortality increased with an increase in the laser fluence. The results thus show if the cooling water is laser-irradiated to mitigate biofouling, this could result in significant damage to the planktonic flora of the flowing seawater system, which in turn might reduce algal biofilm formation on industrially important structures. The reduction in the chl a concentration showed that the laser irradiations also could result in a significant reduction in the primary productivity of the cooling water.  相似文献   

4.
The effect of low mean power laser irradiations with short pulse duration from an Nd:YAG (neodymium-doped yttrium aluminium garnet) laser on a marine biofilm-forming bacterium, Pseudoalteromonas carrageenovora, was investigated in the laboratory. Laser-irradiated bacteria were tested for their ability to attach on nontoxic titanium nitride (TiN) coupons with nonirradiated bacteria as the reference. Two durations of irradiation were tested, 10 and 15 min. Bacterial attachment was monitored after 20 min, 40 min, and 1 h of irradiation. The average laser fluence used for this study was 0.1 J/cm(2). The area of attachment of the irradiated bacteria was significantly less than the reference for both durations of irradiation. The growth of irradiated bacteria showed a longer lag phase than the nonirradiated sample, mainly due to mortality in the former. The bacterial mortality observed was 23.4 +/- 0.71 and 48.6 +/- 6.5% for 10- and 15-min irradiations, respectively. Thus, the results show that low-power pulsed laser irradiations resulted in a significant bacterial mortality and a reduced bacterial attachment on nontoxic hard surfaces.  相似文献   

5.
Laboratory experiments were conducted to study the impact of laser irradiation on the larvae of the fouling barnacle Balanus amphitrite. Research pertaining to fouling invertebrate larvae‐laser interaction is sparse and, hence, data on this aspect were thought significant in order to consider pulsed low power laser irradiations as a possible future antifouling tool. Lethal and sub‐lethal impacts of four very low laser fluences, viz. 0.013, 0.025, 0.05 and 0.1 J cm‐2 for three different durations, viz. 2, 10 and 30 s were investigated. Three growth stages of barnacle larvae, viz. nauplii stage II, nauplii stage IV and cyprids were exposed to the mentioned laser fluences for different durations. While lethal impact was assessed immediately after and 1 d after irradiation, sub‐lethal impacts were studied by monitoring the success rate of the irradiated nauplii in reaching the cyprid stage. In addition, the swimming speed of VIth stage nauplii after irradiation was studied. In the case of cyprids, in addition to the mortality measurement immediately after and 1 d after irradiation, the settlement rate was investigated. In all the above experiments, non‐irradiated larvae served as controls. The results showed an increase in mortality with increasing laser fluence and duration of irradiation. Irradiation for 2 s resulted in significant mortality in nauplii, while it was less in the case of cyprids. In IInd stage nauplii, the mortality immediately after irradiation for 2 s varied from 14.8±2.12 to 97.1±4.1% for laser fluences of 0.013 and 0.1 J cm‐2, respectively. However, in cyprids, the mortality immediately after irradiation for 2 s varied from 12.2±3 to 13.4±1.2% for fluences of 0.013 and 0.1 J cm‐2, respectively. The mortality in IVth stage nauplii was less than that for IInd stage nauplii but more than that for cyprids. There was a significant increase in mortality with time after irradiation. The formation of cyprids from the irradiated larvae was significantly less than that observed for non‐irradiated larvae. Also, the irradiated larvae showed a significantly slower swimming speed compared to the control samples. The settlement rate in cyprids was reduced significantly by the laser irradiation. This was true even for the lowest fluence and shortest period of irradiation tested. Thus, the results of the experiment showed that even a low power pulsed laser irradiation of 0.013 J cm‐2 for 2 s can cause significant damage to fouling barnacle larvae.  相似文献   

6.
Impact by pulsed laser irradiations from an Nd:YAG laser on the marine biofilm-forming bacterium Pseudoalteromonas carrageenovora has been studied using a flow cytometric system. The biofilm-forming bacteria in the planktonic state have been irradiated while flowing, and the mortality and bacterial attachment have been determined by exposing TiN coupons in the system. Coupons suspended in the non-irradiated bacterial flow were treated as the control. The fluence used in the study was 0.1 J/cm(2). Three flow rates (14, 28, and 42 cm/min) and two exposure durations (15 and 30 min) were tested. The results showed the increase in bacterial mortality with the decrease in flow rate. The maximum mortality of 27.5% was observed when the flow rate was 14 cm/min. The bacterial attachment increased with the increase in flow rate and exposure duration. The area of bacterial attachment on the experimental coupons exposed to the irradiated sample was significantly lesser than that for the nonirradiated sample. The results thus show in a flowing system, low power pulsed laser irradiations could reduce the bacterial attachment even though it did not cause significant mortality.  相似文献   

7.
In Vitro Laser Ablation of Natural Marine Biofilms   总被引:1,自引:0,他引:1       下载免费PDF全文
We studied the efficiency of pulsed low-power laser irradiation of 532 nm from an Nd:YAG (neodymium-doped yttrium-aluminum-garnet) laser to remove marine biofilm developed on titanium and glass coupons. Natural biofilms with thicknesses of 79.4 ± 27.8 μm (titanium) and 107.4 ± 28.5 μm (glass) were completely disrupted by 30 s of laser irradiation (fluence, 0.1 J/cm2). Laser irradiation significantly reduced the number of diatoms and bacteria in the biofilm (paired t test; P < 0.05). The removal was better on titanium than on glass coupons.  相似文献   

8.
The recolonization of laser-ablated bacterial monoculture biofilm was studied in the laboratory by using a flow-cytometer system. The marine biofilm-forming bacterium Pseudoalteromonas carrageenovora was used to develop biofilms on titanium coupons. Upon exposure to a low-power pulsed irradiation from an Nd:YAG laser, the coupons with biofilm were significantly reduced both in terms of total viable count (TVC) and area cover. The energy density used for a pulse of 5 ns was 0.1 J/cm(2) and the durations of irradiation exposure were 5 and 10 min. When placed in a flow of dilute ZoBell marine broth medium (10%) the laser-destructed bacterial film in a flow-cytometer showed significant recovery over a period of time. The flow of medium was regulated at 3.2 ml/min. The increase in area cover and TVC, however, was significantly less than that observed for nonirradiated control (t-test, P< 0.05). The coupons were observed for biofilm area cover and TVC at different intervals (3, 6, and 9 h) after irradiation. While the biofilm in the control coupon at the end of 9 h of exposure showed 95.6 +/- 4.1% cover, the 5- and 10-min irradiated samples after 9 h showed 60.3 +/- 6.5 and 37.4 +/- 12.1% area cover, respectively. The reduced rate of recolonization compared to control was thought be due to the lethal and sublethal impacts of laser irradiation on bacteria. This observation thus provided data on the online recolonization speed of biofilm, which is important when considering pulsed laser irradiation as an ablating technique of biofilm formation and removal in natural systems.  相似文献   

9.

Background and Objective

Transcranial low-level laser therapy (LLLT) using near-infrared light can efficiently penetrate through the scalp and skull and could allow non-invasive treatment for traumatic brain injury (TBI). In the present study, we compared the therapeutic effect using 810-nm wavelength laser light in continuous and pulsed wave modes in a mouse model of TBI.

Study Design/Materials and Methods

TBI was induced by a controlled cortical-impact device and 4-hours post-TBI 1-group received a sham treatment and 3-groups received a single exposure to transcranial LLLT, either continuous wave or pulsed at 10-Hz or 100-Hz with a 50% duty cycle. An 810-nm Ga-Al-As diode laser delivered a spot with diameter of 1-cm onto the injured head with a power density of 50-mW/cm2 for 12-minutes giving a fluence of 36-J/cm2. Neurological severity score (NSS) and body weight were measured up to 4 weeks. Mice were sacrificed at 2, 15 and 28 days post-TBI and the lesion size was histologically analyzed. The quantity of ATP production in the brain tissue was determined immediately after laser irradiation. We examined the role of LLLT on the psychological state of the mice at 1 day and 4 weeks after TBI using tail suspension test and forced swim test.

Results

The 810-nm laser pulsed at 10-Hz was the most effective judged by improvement in NSS and body weight although the other laser regimens were also effective. The brain lesion volume of mice treated with 10-Hz pulsed-laser irradiation was significantly lower than control group at 15-days and 4-weeks post-TBI. Moreover, we found an antidepressant effect of LLLT at 4-weeks as shown by forced swim and tail suspension tests.

Conclusion

The therapeutic effect of LLLT for TBI with an 810-nm laser was more effective at 10-Hz pulse frequency than at CW and 100-Hz. This finding may provide a new insight into biological mechanisms of LLLT.  相似文献   

10.
A flow cytometry system was used to evaluate the impact of pulsed laser irradiations from an Nd:YAG laser on two marine coastal water diatoms, Chaetoceros gracilis and Skeletonema costatum. Three flow speeds, i.e. 9, 18 and 27 ml min-1 and three laser fluences, i.e. 0.025, 0.05 and 0.1 J cm-2 pulse-1 were tested during this study. The reduction in cell density and chlorophyll a (chl a) concentrations were monitored by reference to non-irradiated samples as controls. Upon irradiation, the cell density and the chl a concentrations became reduced significantly compared to the control (one way ANOVA p < 0.001 for the cell density in both the species and p < 0.05 for chl a concentrations in both species). A maximum mortality of 0.77 log10 (about 83%) for C. gracilis and 0.68 log10 (about 78%) for S. costatum was observed at 9 ml min-1 flow speed and 0.1 J cm-2 laser fluence. The maximum reduction observed in the chl a concentration was about 26% (control 0.413 and sample 0.306 mg ml-1) for C. gracilis and 27% (control 0.222 and sample 0.16 mg ml-1) for S. costatum, when the flow rate was 9 ml min-1 and the fluence 0.1 J cm-2. In general, mortality increased with an increase in the laser fluence. The results thus show if the cooling water is laser-irradiated to mitigate biofouling, this could result in significant damage to the planktonic flora of the flowing seawater system, which in turn might reduce algal biofilm formation on industrially important structures. The reduction in the chl a concentration showed that the laser irradiations also could result in a significant reduction in the primary productivity of the cooling water.  相似文献   

11.
We studied the laser ablation of laboratory-developed biofilm on titanium and glass surfaces. Specifically, Pseudoalteromonas carrageenovora, a marine biofilm forming bacterium was used to generate laboratory biofilm. Two fluences, 0.05 and 0.1 J/cm(2) and three durations of irradiation, 30 s, 5 min, and 10 min were tested using an Nd;YAG laser of 532 nm wavelength (in the green light area). Nonirradiated coupons with biofilm served as control. The biofilm removal efficiency increased with the increase in laser fluence and duration of irradiation. The maximum biofilm area cover on control coupons of glass and titanium was 62.5 and 76.0%, respectively. Upon irradiation with fluence 0.1 J/cm(2) for the very short duration of 30 s, this reduced to 5.6 and 12.4% and at 10 min to 2.17 and 0.7% on glass and titanium coupons, respectively, while the controls did not show any reductions (62.5 and 76.0% respectively, for glass and titanium coupons). The biofilm TRC (Total Resuscitated Cells) reduction during this period was even more prominent than the area cover, indicating that the remaining biofilm portions on coupons after irradiation were largely composed of dead bacterial cells. The TRC in the irradiation chamber medium for short durations of irradiation showed a significant increase, indicating that the laser irradiation removed live bacteria from the biofilm. The re-growth of the resuscitated cells showed they could grow like the control cells but with a significant lag. The laser's efficiency in the removal of biofilm was better seen on titanium coupons than on glass. Our results showed that a low-power pulsed laser irradiation could be used to remove biofilm formed on hard surfaces.  相似文献   

12.
AIM: To study the molecular level damages in a marine bacterium, Pseudoalteromonas carrageenovora, exposed to low power pulsed laser radiation from an Nd:YAG laser. METHODS AND RESULTS: The laser damages in bacterial DNA were monitored by studying the formation of apurinic/apyrimidinic (AP) sites. Molecular probe kits were used for this purpose. Occurrence of lesions in the cell walls was monitored under a transmission electron microscope (TEM). The results showed that laser radiation significantly increased the number of AP sites in the bacterial DNA. This increase corresponded to the laser fluence (J cm(-2)) and to the duration of laser irradiation. TEM observation showed the occurrence of lesions in bacterial cell walls upon laser irradiation. CONCLUSIONS: It is concluded that bacteria exposed to laser irradiation suffers DNA damages and resulted in broken cell walls. These events led to bacterial mortality. These are in addition to the mechanisms reported earlier such as the photochemical reactions occurring inside the cells upon exposure to low power laser. SIGNIFICANCE AND IMPACT OF THE STUDY: These results help us to understand the mechanisms of bacterial mortality on exposure to low power pulsed laser irradiation and are useful in formulating a laser treatment strategy to kill bacteria.  相似文献   

13.
The purpose of this study was to evaluate photobleaching of the genetically encoded photosensitizer KillerRed in tumor spheroids upon pulsed and continuous wave (CW) laser irradiation and to analyze the mechanisms of cancer cell death after the treatment. We observed the light‐dose dependent mechanism of KillerRed photobleaching over a wide range of fluence rates. Loss of fluorescence was limited to 80% at light doses of 150 J/cm2 and more. Based on the bleaching curves, six PDT regimes were applied for irradiation using CW and pulsed regimes at a power density of 160 mW/cm2 and light doses of 140 J/cm2, 170 J/cm2 and 200 J/cm2. Irradiation of KillerRed‐expressing spheroids in the pulsed mode (pulse duration 15 ns, pulse repetition rate 10 Hz) induced predominantly apoptotic cell death, while in the case of CW mode the cancer cells underwent necrosis. In general, these results improve our understanding of photobleaching mechanisms in GFP‐like proteins and show the importance of appropriate selection of treatment mode for PDT with KillerRed.

Representative fluorescence image of two KillerRed‐expressing spheroids before and immediately after CW irradiation.  相似文献   


14.
Summary Two different strains ofSaccharomyces cerevisiae, one diploid wild type and one haploid mutant deficient in excision repair were irradiated with laser pulses in the range 308 nm to 380 nm after 8-MOP treatment. Both the shoulder (Dq) and the final slope (Do) of the inactivation curves were dependent on wavelength which showed a broad minimum around 355 nm. No differences in inactivation were recorded after pulsed irradiations between the repetition rates of 5 Hz and 35 Hz. Irradiations with pulses of the energy density from 0.1 mJ/cm2 up to 26 mJ/cm2 resulted in a final slope increasing with pulse energy density. This was in contrast to the effects of irradiation alone.Abbreviations 8-MOP 8-methoxypsoralen - UV ultraviolet - PUVA therapy withPsoralen plusUV-A  相似文献   

15.
Phototropism of Avena sativa L. has been characterized using a clinostat to negate the gravitropic response. The kinetics for development of curvature was measured following induction by a single pulse of blue light (BL), five pulses of BL at 20-min intervals, and this same pulsed-light regime following a 2-h red light (RL) pre-irradiation. A final curvature of about 14° is expressed within 180 min following the single pulse; a final curvature of about 62° in about 240 min following five pulses without pre-irradiation; and a curvature of over 125° in 360 min following five pulses after the RL pre-irradiation. For seedlings not pre-irradiated, the final curvature to five pulses of BL at a total fluence of 9.4 pmol·cm-2 increases with time of darkness between pulses up to 15 min; with seedlings pre-irradiated with RL, curvature increased more slowly with time of darkness between pulses to a maximum at 35 min. The final curvature induced by a constant fluence of 9.4 pmol·cm-2 increases linearly with time between the first pulse and last pulse of a five-pulse sequence. The curvature induced by a single BL pulse with a 5-min RL co-irradiation increases with fluence to a maximum of about 60° at about 10 pmol·cm-2, and then decreases to 0° at about 200 pmol·cm-2. Curvature induced by five BL pulses following a 2-h RL pre-irradiation increased with fluence from a threshold of about 0.05 pmol·cm-2 to a maximum of 90° at about 10 pmol·cm-2, and then gradually decreased with fluence to 50° at 1 000 pmol·cm-2. Based on these data, it is concluded that the initial photoproduct formed by a BL pulse has a limited lifetime, that there is a kinetic limitation downstream of the photoreceptor pigment for phototropism, and that the additivive effect of pulsed BL is distinct from the potentiating effect of RL on phototropism. Thus, any degree of curvature from 0° to over 90° may be induced by a fluence in the ascending arm of what is traditionally called the first positive phototropic response.Abbreviations BL blue light - RL red light  相似文献   

16.
Laboratory experiments were conducted to study the impact of laser irradiation on the larvae of the fouling barnacle Balanus amphitrite. Research pertaining to fouling invertebrate larvae-laser interaction is sparse and, hence, data on this aspect were thought significant in order to consider pulsed low power laser irradiations as a possible future antifouling tool. Lethal and sub-lethal impacts of four very low laser fluences, viz. 0.013, 0.025, 0.05 and 0.1 J cm-2 for three different durations, viz. 2, 10 and 30 s were investigated. Three growth stages of barnacle larvae, viz. nauplii stage II, nauplii stage IV and cyprids were exposed to the mentioned laser fluences for different durations. While lethal impact was assessed immediately after and 1 d after irradiation, sub-lethal impacts were studied by monitoring the success rate of the irradiated nauplii in reaching the cyprid stage. In addition, the swimming speed of VIth stage nauplii after irradiation was studied. In the case of cyprids, in addition to the mortality measurement immediately after and 1 d after irradiation, the settlement rate was investigated. In all the above experiments, non-irradiated larvae served as controls. The results showed an increase in mortality with increasing laser fluence and duration of irradiation. Irradiation for 2 s resulted in significant mortality in nauplii, while it was less in the case of cyprids. In IInd stage nauplii, the mortality immediately after irradiation for 2 s varied from 14.8 +/- 2.12 to 97.1 +/- 4.1% for laser fluences of 0.013 and 0.1 J cm-2, respectively. However, in cyprids, the mortality immediately after irradiation for 2 s varied from 12.2 +/- 3 to 13.4 +/- 1.2% for fluences of 0.013 and 0.1 J cm-2, respectively. The mortality in IVth stage nauplii was less than that for IInd stage nauplii but more than that for cyprids. There was a significant increase in mortality with time after irradiation. The formation of cyprids from the irradiated larvae was significantly less than that observed for non-irradiated larvae. Also, the irradiated larvae showed a significantly slower swimming speed compared to the control samples. The settlement rate in cyprids was reduced significantly by the laser irradiation. This was true even for the lowest fluence and shortest period of irradiation tested. Thus, the results of the experiment showed that even a low power pulsed laser irradiation of 0.013 J cm-2 for 2 s can cause significant damage to fouling barnacle larvae.  相似文献   

17.
When prothalli ofAdiantum capillus-veneris L. were kept for 2 d in the dark, chloroplasts gathered along the anticlinal walls (Kagawa and Wada, 1994, J Plant Res 107: 389–398). In these dark-adapted prothallial cells, irradiation with a microbeam (10 gm in diameter) of red (R) or blue light (B) for 60 s moved the chloroplasts towards the irradiated locus during a subsequent dark period. Chloroplasts located less than 20 gm from the center of the R microbeam (18 J·m–2) moved towards the irradiated locus. The higher the fluence of the light, the greater the distance from which chloroplasts could be attracted. The B microbeam was less effective than the R microbeam. Chloroplasts started to move anytime up to 20 min after the R stimulus, but with the B microbeam the effect of the stimulus was usually apparent within 10 min after irradiation. The velocity of chloroplast migration was independent of light-fluence in both R and B and was about - 0.3 m·min–1 between 15 min and 30 min after irradiation. Whole-cell irradiation with far-red light immediately after R- and B-microbeam irradiations demonstrated that these responses were mediated by phytochrome and a blue-light-absorbing pigment, respectively. Sequential treatment with R and B microbeams, whose fluence rates were less than the threshold values when applied separately, resulted in an additive effect and induced chloroplast movement, strongly suggesting that signals from phytochrome and the blue-light-absorbing pigment could interact at some point before the induction of chloroplast movement.Abbreviations B blue light - FR far-red light - IR infrared light - R red light  相似文献   

18.
Nanosecond pulsed laser irradiation can trigger a release of nucleic acids from gold nanoparticles, but the involved nanoeffects are not fully understood yet. Here we investigate the release of coumarin labeled siRNA from 15 to 30 nm gold particles after nanosecond pulsed laser irradiation. Temperatures in the particle and near the surface were calculated for the different radiant exposures. Upon irradiation with laser pulses of 4 nanosecond duration release started for both particle sizes at a calculated temperature increase of approximately 500 K. Maximum coumarin release was observed for 15 nm particles after irradiation with radiant exposure of 80 mJ cm?2 and with 32 mJ cm?2 for 30 nm particles. This corresponds to a temperature increase of 815 and 900 K, respectively. Our results show that the molecular release by nanosecond pulsed irradiation is based on a different mechanism compared to continuous or femtosecond irradiation. Local temperatures are considerably higher and it is expected that bubble formation plays a crucial role in release and damage to cellular structures.   相似文献   

19.
Aggregation of lysozyme in an acidic solution generates inactive amyloid-like fibrils, with a broad infrared peak appearing at 1,610?C1,630?cm?1, characteristic of a ??-sheet rich structure. We report here that spontaneous refolding of these fibrils in water could be promoted by mid-infrared free-electron laser (mid-IR FEL) irradiation targeting the amide bands. The Fourier transform infrared spectrum of the fibrils reflected a ??-sheet content that was as low as that of the native structure, following FEL irradiation at 1,620?cm?1 (amide I band); both transmission-electron microscopy imaging and Congo Red assay results also demonstrated a reduced fibril structure, and the enzymatic activity of lysozyme fibrils recovered to 70?C90?% of the native form. Both irradiations at 1,535?cm?1(amide II band) and 1,240?cm?1 (amide III band) were also more effective for the refolding of the fibrils than mere heating in the absence of FEL. On the contrary, either irradiation at 1,100 or 2,000?cm?1 afforded only about 60?% recovery of lysozyme activity. These results indicate that the specific FEL irradiation tuned to amide bands is efficient in refolding of lysozyme fibrils into native form.  相似文献   

20.
The effects of electromagnetic radiation of a gyrotron with an operating frequency of 263 GHz on rat erythrocyte electrophoretic mobility, malonic dialdehyde, ATP, and 2,3-diphosphoglycerate concentration have been studied in vitro. The blood was irradiated under continuous and pulsed gyrotron emission modes with the estimated incident energy flux on an object from 0.1 to 20 mW/cm2. It has been established that the studied erythrocyte characteristics changed in different directions depending on the mode and the incident energy flux: the erythrocyte electrophoretic mobility rate and ATP concentration decreased, while the malonic dialdehyde and 2,3-diphosphoglycerate concentration increased at a low incident energy flux and continuous exposure mode; all studied parameters increased under the pulsed exposure mode. An incident energy flux increase caused a reduction of these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号