首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new strain of influenza A (H1N1) virus is a major cause of morbidity and mortality around the world. The neuraminidase of the influenza virus has been the most potential target for the anti-influenza drugs such as oseltamivir and zanamivir. However, the emergence of drug-resistant variants of these drugs makes a pressing need for the development of new neuraminidase inhibitors for controlling illness and transmission. Here a 3D structure model of H1N1 avian influenza virus neuraminidase type 1 (N1) was constructed based on the structure of the template H5N1 avian influenza virus N1. Upon application of virtual screening technique for N1 inhibitors, two novel compounds (ZINC database ID: ZINC02128091, ZINC02098378) were found as the most favorable interaction energy with N1. Docking results showed that the compounds bound not only in the active pocket, but also in a new hydrophobic cave which contains Arg368, Trp399, Ile427, Pro431 and Lys432 of N1. Our result suggested that both of the screened compounds containing the hydrophobic group bring a strong conjugation effect with Arg293, Arg368 Lys432 of N1 by pi-pi interaction. However, the control inhibitors zanamivir and oseltamivir do not have this effect. The details of N1-compound binding structure obtained will be valuable for the development of a new anti-influenza virus agent.  相似文献   

2.
In the context of a recent pandemic threat by the worldwide spread of H5N1 avian influenza, the high resistance of H5N1 virus to the most widely used commercial drug, oseltamivir (Tamiflu), is currently an important research topic. Herein, molecular bases of the mechanism of H5N1 NA resistance to oseltamivir were elucidated using a computational approach in a systematic fashion. Using the crystal structure of the complex of H5N1 NA with OTV (PDB ID: 2hu0) as the starting point, the question, how mutations at His274 by both smaller side chain (Gly, Ser, Asn, Gln) and larger side chain (Phe, Tyr) residues influence the sensitivity of N1 to oseltamivir, was addressed and correlated with the experimental data. The smaller side chain residue mutations of His274 resulted in slightly enhanced or unchanged NA sensitivity to OTV, while His274Phe and His274Tyr reduced the susceptibility of OTV to N1. In contrast to the binding free energies, the net charges of Glu276 and Arg224, making charge-charge interactions with Glu276, were established to be more sensitive to detecting subtle conformational differences induced at the key residue Glu276 by the His274X mutations. This study provides deeper insights into the possibility of developing viable drug-resistant mutants.  相似文献   

3.
Influenza A (H5N1) virus is one of the world's greatest pandemic threats. Neuraminidase (NA) inhibitors, oseltamivir and zanamivir, prevent the spread of influenza, but drug‐resistant viruses have reduced their effectiveness. Resistance depends on the binding properties of NA‐drug complexes. Key residue mutations within the active site of NA glycoproteins diminish binding, thereby resulting in drug resistance. We performed molecular simulations and calculations to characterize the mechanisms of H5N1 influenza virus resistance to oseltamivir and predict potential drug‐resistant mutations. We examined two resistant NA mutations, H274Y and N294S, and one non‐drug‐resistant mutation, E119G. Six‐nanosecond unrestrained molecular dynamic simulations with explicit solvent were performed using NA‐oseltamivir complexes containing either NA wild‐type H5N1 virus or a variant. MM_PBSA techniques were then used to rank the binding free energies of these complexes. Detailed analyses indicated that conformational change of E276 in the Pocket 1 region of NA is a key source of drug resistance in the H274Y mutant but not in the N294S mutant.  相似文献   

4.
The principal receptor-binding domain (Ser(17)-Val(31)) of parathyroid hormone (PTH) is predicted to form an amphiphilic alpha-helix and to interact primarily with the N-terminal extracellular domain (N domain) of the PTH receptor (PTHR). We explored these hypotheses by introducing a variety of substitutions in region 17-31 of PTH-(1-31) and assessing, via competition assays, their effects on binding to the wild-type PTHR and to PTHR-delNt, which lacks most of the N domain. Substitutions at Arg(20) reduced affinity for the intact PTHR by 200-fold or more, but altered affinity for PTHR-delNt by 4-fold or less. Similar effects were observed for Glu substitutions at Trp(23), Leu(24), and Leu(28), which together form the hydrophobic face of the predicted amphiphilic alpha-helix. Glu substitutions at Arg(25), Lys(26), and Lys(27) (which forms the hydrophilic face of the helix) caused 4-10-fold reductions in affinity for both receptors. Thus, the side chains of Arg(20), together with those composing the hydrophobic face of the ligand's putative amphiphilic alpha-helix, contribute strongly to PTHR-binding affinity by interacting specifically with the N domain of the receptor. The side chains projecting from the opposite helical face contribute weakly to binding affinity by different mechanisms, possibly involving interactions with the extracellular loop/transmembrane domain region of the receptor. The data help define the roles that side chains in the binding domain of PTH play in the PTH-PTHR interaction process and provide new clues for understanding the overall topology of the bimolecular complex.  相似文献   

5.
The structure-based design of novel H5N1 neuraminidase inhibitors is currently a research topic of vital importance owing to both a recent pandemic threat by the worldwide spread of H5N1 avian influenza and the high resistance of H5N1 virus to the most widely used commercial drug, oseltamivir-OTV (Tamiflu). A specific criterion used in this work for determining fully acceptable conformations of potential inhibitors is a previous experimental proposal of exploiting potential benefits for drug design offered by the ‘150-cavity’ adjacent to the NA active site. Using the crystal structure of H5N1 NA (PDB ID: 2hty) as the starting point, in a set of 54 inhibitors previously proposed by modifying the side chains of oseltamivir, 4 inhibitors were identified using two different computational strategies (ArgusLab4.0.1, FlexX-E3.0.1) both to lower the binding free energy (BFE) of oseltamivir and to have partially acceptable conformations. These 4 oseltamivr structure-based analogues were found to adopt the most promising conformations by identifying the guanidinium side chain of Arg156 as a prospective partner for making polar contacts, but none of the modified 4-amino groups of oseltamivir in the 4 favorable conformations was found to make polar contacts with the guanidinium side chain of Arg156. Hence, the structures of two additional inhibitors were designed and shown to further lower the binding free energy of OTV relative to the previous 54 inhibitors. These two novel structures clearly suggest that it may be possible for a new substituent to be developed by functional modifications at position of the 4-amino group of oseltamivir in order to make polar contacts with the guanidinium side chain of Arg156, and thereby enhance the binding of a more potent inhibitor. Several standpoints of vital importance for designing novel structures of potentially more effective H5N1 NA inhibitors are established.  相似文献   

6.
The neuraminidase (NA) of influenza virus is the target of anti-flu drugs oseltamivir and zanamivir. Clinical practices showed that oseltamivir was effective to treat the 2009-H1N1 influenza but failed to the 2006-H5N1 avian influenza. To perform an in-depth analysis on such a drug-resistance problem, the 2009-H1N1-NA structure was developed. To compare it with the crystal 2006-H5N1-NA structure as well as the 1918 influenza virus H1N1-NA structure, the multiple sequential and structural alignments were performed. It has been revealed that the hydrophobic residue Try347 in H5N1-NA does not match with the hydrophilic carboxyl group of oseltamivir as in the case of H1N1-NA. This may be the reason why H5N1 avian influenza virus is drug-resistant to oseltamivir. The finding provides useful insights for how to modify the existing drugs, such as oseltamivir and zanamivir, making them not only become more effective against H1N1 virus but also effective against H5N1 virus.  相似文献   

7.
A conformational search for the most probable structures of the hormone alpha-MSH in aqueous solution was performed in order to help determine the structural features necessary for biological activity. The free-energy surface was modeled using methods from integral equation theory, and high-temperature molecular dynamics was used to enhance conformational sampling. Families of low free-energy structures have been found. The minimum energy structure shows a stable beta-turn conformation in the putative message region that is stabilized by a salt bridge between Glu5 and Lys11. The orientation of the side chains reflects the amphiphilic nature of the peptide, and a close interaction between the side chains of the His6, Phe7 and Trp9 was observed. Several structural features observed in the minimum energy structure agree well with experimental results. The conformational features led to a hypothesis of a receptor-hormone interaction model in which the hydrophobic side chains of Phe7 and Trp9 interact with the transmembrane portion of the human melanocortin (MC1) receptor. Also, the positively charged side chain of Arg8 and the imidazole side chain of His6 may interact with the negatively charged portions of the receptor which may even be on the receptor's extracellular loops.  相似文献   

8.
Aiming to understand, at the molecular level, why oseltamivir (OTV) cannot be used for inhibition of human influenza neuraminidase subtype N1 as effectively as for subtypes N2 and N9, molecular dynamics simulations were carried out for the three complexes, OTV-N1, OTV-N2, and OTV-N9. The three-dimensional OTV-N2 and OTV-N9 initial structures were represented by the x-ray structures, whereas that of OTV-N1, whose x-ray structure is not yet solved, was built up using the aligned sequence of H5N1 isolated from humans in Thailand with the x-ray structure of the N2-substrate as the template. In comparison to the OTV-N2 and OTV-N9 complexes, dramatic changes were observed in the OTV conformation in the OTV-N1 complex in which two of its bulky side chains, N-acethyl (-NHAc) and 1-ethylproxy group (-OCHEt2), were rotated to adjust the size to fit into the N1 catalytic site. This change leads directly to the rearrangements of the OTV's environment, which are i), distances to its neighbors, W-178 and E-227, are shorter whereas those to residues R-224, E-276, and E-292 are longer; ii), hydrogen bonds to the two nearest neighbors, R-224 and E-276, are still conserved in distance and number as well as percentage occupation; iii), the calculated ligand/enzyme binding free energies of -7.20, -13.44, and -13.29 kcal/mol agree with their inhibitory activities in terms of the experimental IC50 of 36.1-53.2 nM, 1.9-2.7 nM, and 9.5-17.7 nM for the OTV-N1, OTV-N2, and OTV-N9 complexes, respectively; and iv), hydrogen-bond breaking and creation between the OTV and neighborhood residues are accordingly in agreement with the ligand solvation/desolvation taking place in the catalytic site.  相似文献   

9.

Background

The influenza A (H1N1) pandemic swept across the globe from April 2009 to August 2010 affecting millions. Many WHO Member States relied on antiviral drugs, specifically neuraminidase inhibitors (NAIs) oseltamivir and zanamivir, to treat influenza patients in critical condition. Such drugs have been found to be effective in reducing severity and duration of influenza illness, and likely reduced morbidity during the pandemic. However, it is less clear whether NAIs used during the pandemic reduced H1N1 mortality.

Methods

Country-level data on supply of oseltamivir and zanamivir were used to predict H1N1 mortality (per 100,000 people) from July 2009 to August 2010 in forty-two WHO Member States. Poisson regression was used to model the association between NAI supply and H1N1 mortality, with adjustment for economic, demographic, and health-related confounders.

Results

After adjustment for potential confounders, each 10% increase in kilograms of oseltamivir, per 100,000 people, was associated with a 1.6% reduction in H1N1 mortality over the pandemic period (relative rate (RR) = 0.84 per log increase in oseltamivir supply). While the supply of zanamivir was considerably less than that of oseltamivir in each Member State, each 10% increase in kilogram of active zanamivir, per 100,000, was associated with a 0.3% reduction in H1N1 mortality (RR = 0.97 per log increase).

Conclusion

While there are limitations to the ecologic nature of these data, this analysis offers evidence of a protective relationship between antiviral drug supply and influenza mortality and supports a role for influenza antiviral use in future pandemics.  相似文献   

10.
To clarify the higher eukaryotic initiation factor 4E (eIF4E) binding selectivity of 4E‐binding protein 2 (4E‐BP2) than of 4E‐BP1, as determined by Trp fluorescence analysis, the crystal structure of the eIF4E binding region of 4E‐BP2 in complex with m7GTP‐bound human eIF4E has been determined by X‐ray diffraction analysis and compared with that of 4E‐BP1. The crystal structure revealed that the Pro47‐Ser65 moiety of 4E‐BP2 adopts a L ‐shaped conformation involving extended and α‐helical structures and extends over the N‐terminal loop and two different helix regions of eIF4E through hydrogen bonds, and electrostatic and hydrophobic interactions; these features were similarly observed for 4E‐BP1. Although the pattern of the overall interaction of 4E‐BP2 with eIF4E was similar to that of 4E‐BP1, a notable difference was observed for the 60–63 sequence in relation to the conformation and binding selectivity of the 4E‐BP isoform, i.e. Met‐Glu‐Cys‐Arg for 4E‐BP1 and Leu‐Asp‐Arg‐Arg for 4E‐BP2. In this paper, we report that the structural scaffold of the eIF4E binding preference for 4E‐BP2 over 4E‐BP1 is based on the stacking of the Arg63 planar side chain on the Trp73 indole ring of eIF4E and the construction of a compact hydrophobic space around the Trp73 indole ring by the Leu59‐Leu60 sequence of 4E‐BP2. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
alpha-Neurotoxins bind with high affinity to alpha-gamma and alpha-delta subunit interfaces of the nicotinic acetylcholine receptor. Since this high affinity complex likely involves a van der Waals surface area of approximately 1200 A(2) and 25-35 residues on the receptor surface, analysis of side chains should delineate major interactions and the orientation of bound alpha-neurotoxin. Three distinct regions on the gamma subunit, defined by Trp(55), Leu(119), Asp(174), and Glu(176), contribute to alpha-toxin affinity. Of six charge reversal mutations on the three loops of Naja mossambica mossambica alpha-toxin, Lys(27) --> Glu, Arg(33) --> Glu, and Arg(36) --> Glu in loop II reduce binding energy substantially, while mutations in loops I and III have little effect. Paired residues were analyzed by thermodynamic mutant cycles to delineate electrostatic linkages between the six alpha-toxin charge reversal mutations and three key residues on the gamma subunit. Large coupling energies were found between Arg(33) at the tip of loop II and gammaLeu(119) (-5.7 kcal/mol) and between Lys(27) and gammaGlu(176) (-5.9 kcal/mol). gammaTrp(55) couples strongly to both Arg(33) and Lys(27), whereas gammaAsp(174) couples minimally to charged alpha-toxin residues. Arg(36), despite strong energetic contributions, does not partner with any gamma subunit residues, perhaps indicating its proximity to the alpha subunit. By analyzing cationic, neutral and anionic residues in the mutant cycles, interactions at gamma176 and gamma119 can be distinguished from those at gamma55.  相似文献   

12.
Two neuraminidase inhibitors, oseltamivir and zanamivir, are important drug treatments for influenza. Oseltamivir-resistant mutants of the influenza virus A/H1N1 and A/H5N1 have emerged, necessitating the development of new long-acting antiviral agents. One such agent is a new neuraminidase inhibitor R-125489 and its prodrug CS-8958. An atomic level understanding of the nature of this antiviral agents binding is still missing. We address this gap in our knowledge by applying steered molecular dynamics (SMD) simulations to different subtypes of seasonal and highly pathogenic influenza viruses. We show that, in agreement with experiments, R-125489 binds to neuraminidase more tightly than CS-8958. Based on results obtained by SMD and the molecular mechanics-Poisson–Boltzmann surface area method, we predict that R-125489 can be used to treat not only wild-type but also tamiflu-resistant N294S, H274Y variants of A/H5N1 virus as its binding affinity does not vary much across these systems. The high correlation level between theoretically determined rupture forces and experimental data on binding energies for the large number of systems studied here implies that SMD is a promising tool for drug design.  相似文献   

13.
The viral surface glycoprotein neuraminidase (NA) allows the influenza virus penetration and the egress of virions. NAs are classified as A, B, and C. Type-A NAs from influenza virus are subdivided into two phylogenetically distinct families, group-1 and group-2. NA inhibition by oseltamivir represents a therapeutic approach against the avian influenza virus H5N1. Here, structural bases for oseltamivir recognition by group-1 NA1, NA8 and group-2 NA9 are highlighted by the ScrewFit algorithm for quantitative structure comparison. Oseltamivir binding to NA1 and NA8 affects the geometry of Glu119 and of regions Arg130-Ser160, Val240-Gly260, and Asp330-Glu382, leading to multiple NA conformations. Additionally, although NA1 and NA9 share almost the same oseltamivir-bound final conformation, they show some relevant differences as suggested by the ScrewFit algorithm. These results indicate that the design of new NA inhibitors should take into account these family-specific effects induced on the whole structure of NAs.  相似文献   

14.
Surface glycoproteins of influenza virus [haemagglutinin (HA) and neuraminidase (NA)] are vital target proteins in current rational drug designs. Here, the molecular recognitions between juglone and A/H5N1 influenza virus membrane glycoproteins were studied through flexible docking and molecular dynamic simulations. The results revealed that juglone has the binding specificity to HA (H5) and NA (N1), especially the spatial match of 2-cyclohexene-1,4-dione ring. N1 rather than H5 protein is responsible for the binding, with the interaction energies of ? 72.48 and ? 41.91 kcal mol? 1, respectively. The residues Arg152, Arg156, Glu276, Glu277 and Arg292 of N1 protein had important roles during the binding process. Compared with other NA inhibitors, juglone is a potential source of anti-influenza ingredients, with better interaction energy and relatively smaller size. In addition, this work also pointed out how to effectively modify the functional groups of juglone. We hope that the results will aid our understanding of recognitions involving influenza surface glycoproteins with the phenolic compounds and warrant the experimental aspects to design novel anti-influenza drugs.  相似文献   

15.
Guan L  Hu Y  Kaback HR 《Biochemistry》2003,42(6):1377-1382
Major determinants for substrate recognition by the lactose permease of Escherichia coli are at the interface between helices IV (Glu126, Ala122), V (Arg144, Cys148), and VIII (Glu269). We demonstrate here that Trp151, one turn of helix V removed from Cys148, also plays an important role in substrate binding probably by aromatic stacking with the galactopyranosyl ring. Mutants with Phe or Tyr in place of Trp151 catalyze active lactose transport with time courses nearly the same as wild type. In addition, apparent K(m) values for lactose transport in the Phe or Tyr mutants are only 6- or 3-fold higher than wild type, respectively, with a comparable V(max). Surprisingly, however, binding of high-affinity galactoside analogues is severely compromised in the mutants; the affinity of mutant Trp151-->Phe or Trp151-->Tyr is diminished by factors of at least 50 or 20, respectively. The results demonstrate that Trp151 is an important component of the binding site, probably orienting the galactopyranosyl ring so that important H-bond interactions with side chains in helices IV, V, and VIII can be realized. The results are discussed in the context of a current model for the binding site.  相似文献   

16.
The leucine zipper motif is a characteristic amino acid sequence found in dimeric DNA-binding proteins. Computer-generated models for leucine zippers were constructed as alpha-helical coiled dimers with leucine repeated every seventh residue. An empirical Gibbs free energy, delta G, function which incorporates hydrophobic force, electrostatic interactions, and conformational entropy loss as the major intermolecular interactions was used to estimate the delta G of dimer formation in fos, jun, and GCN4 zipper sequences. The calculations showed that complexes known to form stable homo- or heterodimers have favorable (negative) delta G, while other less stable complexes have unfavorable (positive) delta G. Leucines in position d of the coiled coil contribute large hydrophobic stabilization energies while residues in the a position contribute less to dimer stability. Hydrophobic contributions show little sequence specificity, however, and do not contribute significantly to homo/heterodimer preference. Charged residues in the e and g positions, on the other hand, determine homo/heterodimer specificity. In GCN4 homodimers, residues GLU el, Glu b2, Lys g2, and Lys e4 greatly contribute to dimer stability. The preferential stability of fos-jun heterodimer over the jun-jun and fos-fos homodimers is primarily due to the side chains Asp b1, Glu g1, Asp b2, Glu e2, Glu g2, Glu g3, and Lys a5 of the fos helix, and Arg c1, Lys g1, Lys b2, Lys e2, Arg e4, and Glu g4 of the jun helix.  相似文献   

17.
Multidrug resistance of the pandemic H1N1-2009 strain of influenza has been reported due to widespread treatment using the neuraminidase (NA) inhibitors, oseltamivir (Tamiflu), and zanamivir (Relenza). From clinical data, the single I223R (IR(1)) mutant of H1N1-2009 NA reduced efficacy of oseltamivir and zanamivir by 45 and 10 times, (1) respectively. More seriously, the efficacy of these two inhibitors against the double mutant I223R/H275Y (IRHY(2)) was significantly reduced by a factor of 12?374 and 21 times, respectively, compared to the wild-type.(2) This has led to the question of why the efficacy of the NA inhibitors is reduced by the occurrence of these mutations and, specifically, why the efficacy of oseltamivir against the double mutant IRHY was significantly reduced, to the point where oseltamivir has become an ineffective treatment. In this study, 1 μs of molecular dynamics (MD) simulations was performed to answer these questions. The simulations, run using graphical processors (GPUs), were used to investigate the effect of conformational change upon binding of the NA inhibitors oseltamivir and zanamivir in the wild-type and the IR and IRHY mutant strains. These long time scale dynamics simulations demonstrated that the mechanism of resistance of IRHY to oseltamivir was due to the loss of key hydrogen bonds between the inhibitor and residues in the 150-loop. This allowed NA to transition from a closed to an open conformation. Oseltamivir binds weakly with the open conformation of NA due to poor electrostatic interactions between the inhibitor and the active site. The results suggest that the efficacy of oseltamivir is reduced significantly because of conformational changes that lead to the open form of the 150-loop. This suggests that drug resistance could be overcome by increasing hydrogen bond interactions between NA inhibitors and residues in the 150-loop, with the aim of maintaining the closed conformation, or by designing inhibitors that can form a hydrogen bond to the mutant R223 residue, thereby preventing competition between R223 and R152.  相似文献   

18.
We have tested the susceptibility to neuraminidase inhibitors of 155 clade 2.1 H5N1 viruses from Indonesia, isolated between 2006–2008 as well as 12 clade 1 isolates from Thailand and Cambodia from 2004–2007 using a fluorometric MUNANA-based enzyme inhibition assay. The Thailand and Cambodian clade 1 isolates tested here were all susceptible to oseltamivir and zanamivir, and sequence comparison indicated that reduced oseltamivir susceptibility we observed previously with clade 1 Cambodian isolates correlated with an S246G neuraminidase mutation. Eight Indonesian viruses (5%), all bearing I222 neuraminidase mutations, were identified as mild to extreme outliers for oseltamivir based on statistical analysis by box plots. IC50s were from 50 to 500-fold higher than the reference clade 1 virus from Viet Nam, ranging from 43–75 nM for I222T/V mutants and from 268–349 nM for I222M mutants. All eight viruses were from different geographic locales; all I222M variants were from central Sumatra. None of the H5N1 isolates tested demonstrated reduced susceptibility to zanamivir (IC50s all <5 nM). All I222 mutants showed loss of slow binding specifically for oseltamivir in an IC50 kinetics assay. We identified four other Indonesian isolates with higher IC50s which also demonstrated loss of slow binding, including one virus with an I117V mutation. There was a minimal effect on the binding of zanamivir and peramivir for all isolates tested. As H5N1 remains a potential pandemic threat, the incidence of mutations conferring reduced oseltamivir susceptibility is concerning and emphasizes the need for greater surveillance of drug susceptibility.  相似文献   

19.
In spired by the important role of amide groups of anti-influenza drugs oseltamivir, zanamivir and peramivir in bioactivity, a series of novel amides modified rupestonic acid derivatives were designed and synthesized. The absolute configuration of critical intermediate bearing chloride with newly formed stereocenter was confirmed by X-ray crystallographic analysis. And all new compounds were evaluated for their in vitro inhibitory activities against influenza A (H1N1 and H3N2) and influenza B viruses. The bioassay results showed that 5h with 4-fluorbenzylsulfonyl modified to 2 position of methyl rupestonate displayed the highest activity against influenza A (H1N1 and H3N2) viruses, even stronger than reference drugs oseltamivir and ribavirin (RVB), and might be recommended as a lead compound to further develop the new anti-influenza reagent.  相似文献   

20.
Influenza viruses resistant to antiviral drugs emerge frequently. Not surprisingly, the widespread treatment in many countries of patients infected with 2009 pandemic influenza A (H1N1) viruses with the neuraminidase (NA) inhibitors oseltamivir and zanamivir has led to the emergence of pandemic strains resistant to these drugs. Sporadic cases of pandemic influenza have been associated with mutant viruses possessing a histidine-to-tyrosine substitution at position 274 (H274Y) in the NA, a mutation known to be responsible for oseltamivir resistance. Here, we characterized in vitro and in vivo properties of two pairs of oseltaimivir-sensitive and -resistant (possessing the NA H274Y substitution) 2009 H1N1 pandemic viruses isolated in different parts of the world. An in vitro NA inhibition assay confirmed that the NA H274Y substitution confers oseltamivir resistance to 2009 H1N1 pandemic viruses. In mouse lungs, we found no significant difference in replication between oseltamivir-sensitive and -resistant viruses. In the lungs of mice treated with oseltamivir or even zanamivir, 2009 H1N1 pandemic viruses with the NA H274Y substitution replicated efficiently. Pathological analysis revealed that the pathogenicities of the oseltamivir-resistant viruses were comparable to those of their oseltamivir-sensitive counterparts in ferrets. Further, the oseltamivir-resistant viruses transmitted between ferrets as efficiently as their oseltamivir-sensitive counterparts. Collectively, these data indicate that oseltamivir-resistant 2009 H1N1 pandemic viruses with the NA H274Y substitution were comparable to their oseltamivir-sensitive counterparts in their pathogenicity and transmissibility in animal models. Our findings highlight the possibility that NA H274Y-possessing oseltamivir-resistant 2009 H1N1 pandemic viruses could supersede oseltamivir-sensitive viruses, as occurred with seasonal H1N1 viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号