首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
We have studied herein the effect of position and the number of -NO, -NO2, -NH2 and -CH3 groups on the structure, stability, impact sensitivity, density, thermodynamic and detonation properties of triazolones by performing density functional theory calculations at the B3LYP/aug-cc-pVDZ level. The optimized structures, vibrational frequencies and thermodynamic values for triazolones have been obtained in their ground state. Kamlet-Jacob equations were used to calculate the detonation velocity and detonation pressure of model compounds. The detonation properties of NNTO (D 8.75 to 9.10 km/s, P 34.0 to 37.57 GPa), DNTO (D 8.80 to 9.05 km/s, P 35.55 to 38.27 GPa), ADNTO (D 9.01 to 9.42 km/s and P 37.81 to 41.10 GPa) and ANNTO (D 8.58 to 9.0 km/s, P 30.81 to 36.25 GPa) are compared with those of 1,3,5-trinitro-1,3,5-triazine (RDX) (D 8.75 km/s, P 34.70 Gpa) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) (D 8.96 km/s, P 35.96 GPa). The designed compounds satisfy the criteria of high energy materials.  相似文献   

2.
We report herein the structure and explosive properties of the possible isomers of 3-amino-1-nitroso-4-nitrotriazol-5-one-2-oxide computed from the B3LYP/aug-cc-pVDZ level. The optimized structures, vibrational frequencies and thermodynamic values for triazol-5-one-N-oxides were obtained in the ground state. Several designed compounds have densities varying from 2.103 to 2.177 g/cm3. The detonation properties were evaluated by the Kamlet-Jacob equations based on the predicted density and the calculated heat of explosion. The detonation properties of triazol-5-one-N-oxides (D 9.87 to 10.11 km s?1 and P 48.95 to 50.61 GPa) appear to be promising compared with those of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (D 9.20 km s?1, P 42.0 Gpa) and octanitrocubane (D 9.90 km s?1, P 48.45 GPa). The substitution of secondary amino hydrogen of the triazole ring by amino group shows better impact sensitivity/or stability however the model compounds seem to be highly sensitive.  相似文献   

3.
Trinitromethyl-substituted aminotetrazoles with –NH2, –NO2, –N3, and –NHC(NO2)3 groups were investigated at the B3LYP/6-31G(d) level of density functional theory. Their sublimation enthalpies, thermodynamic properties, and heats of formation were calculated. The thermodynamic properties of these compounds increase with temperature as well as with the number of nitro groups attached to the tetrazole ring. In addition, the detonation velocities and detonation pressures of these compounds were successfully predicted using the Kamlet–Jacobs equations. It was found that these compounds exhibit good detonation properties, and that compound G (D = 9.2 km/s, P = 38.8 GPa) has the most powerful detonation properties, which are similar to those of the well-known explosive HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocine). Finally, the electronic structures and bond dissociation energies of these compounds were calculated. The BDEs of their C–NO2 bonds were found to range from 101.9 to 125.8 kJ/mol-1. All of these results should provide useful fundamental information for the design of novel HEDMs.  相似文献   

4.
In this work, six (A–F) nitramino (–NHNO2)-substituted ditetrazole 2-N-oxides with different bridging groups (–CH2–, –CH2–CH2–, –NH–, –N=N–, and –NH–NH–) were designed. The six compounds were based on the parent compound tetrazole 2-N-oxide, which possesses a high oxygen balance and high density. The structure, heat of formation, density, detonation properties (detonation velocity D and detonation pressure P), and the sensitivity of each compound was investigated systematically via density functional theory, by studying the electrostatic potential, and using molecular mechanics. The results showed that compounds A–F all have outstanding energetic properties (D: 9.1–10.0 km/s; P: 38.0–46.7 GPa) and acceptable sensitivities (h 50: 28–37 cm). The bridging group present was found to greatly affect the detonation performance of each ditetrazole 2-N-oxide, and the compound with the –NH–NH– bridging group yielded the best results. Indeed, this compound (F) was calculated to have comparable sensitivity to the famous and widely used high explosive 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), but with values of D and P that were about 8.7% and 19.4% higher than those for HMX, respectively. The present study shows that tetrazole 2-N-oxide is a useful parent compound which could potentially be used in the design of new and improved high-energy compounds to replace existing energetic compounds such as HMX.  相似文献   

5.
Ab initio molecular orbital calculations at the B3LYP/aug-cc-pVDZ level have been carried out to explore the structure, stability, sensitivity and band gap of nitropyrazoles. Kamlet and Jacob equations were used to calculate the detonation velocity and detonation pressure of designed compounds. The explosive properties of polynitropyrazole-N-oxides appear to be higher compared with those of octanitrocubane and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexa azaisowurtzitane. The sensitivity, heat of explosion, density, detonation velocity and detonation pressure are presumably related to the number and the relative positions of NO2 groups on the pyrazole ring.  相似文献   

6.
Two new nitramine compounds containing pyridine, 1,3,5,7-tetranitro-8-(nitromethyl) -4-imidazolino[4,5-b]4-imidazolino-[4,5-e]pyridine and its N-oxide 1,3,5,7-tetranitro-8- (nitromethyl)-4-imidazolino[4,5-b]4-imidazolino-[4,5-e]pyridine-4-ol were proposed. Density functional theory (DFT) has been employed to study the molecular geometries, electronic structures, infrared spectra, and thermodynamic properties at the B3LYP/6-31G* level. Their detonation performances evaluated using the Kamlet-Jacobs equations with the calculated densities and heats of formation are superior to those of HMX. The predicted densities of them were ca. 2 g*cm-3, detonation velocities were over 9 km*s-1, and detonation pressures were about 40 GPa, showing that they may be potential candidates of high energy density materials (HEDMs). The natural bond orbital analysis indicated that N-NO2 bond is the trigger bond during thermolysis process. The stability of the title compounds is slightly lower than that of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12- hexaazaisowurtzitane (CL-20). The results of this study may provide basic information for the molecular design of new HEDMs.  相似文献   

7.
A novel polynitro cage compound 4,8,11,14,15-pentanitro-2,6,9,13-tetraoxa-4,8,11,14,15–pentaazaheptacyclo [5.5.1.13,11.15,9]pentadecane(PNTOPAHP) has been designed and investigated at the DFT-B3LYP/6-31(d) level. Properties, such as electronic structure, IR spectrum, heat of formation, thermodynamic properties and crystal structure have been predicted. This compound is most likely to crystallize in C2/c space group, and the corresponding cell parameters are Z?=?8, a?=?29.78 Å, b?=?6.42 Å, c?=?32.69 Å, α?=?90.00°, β?=?151.05°, γ?=?90.00°and ρ?=?1.94 g/cm3. In addition, the detonation velocity and pressure have also been calculated by the empirical Kamlet-Jacobs equation. As a result, the detonation velocity and pressure of this compound are 9.82 km/s, 44.67 GPa, respectively, a little higher than those of 4,10-dinitro-2,6,8,12–tetraoxa?4,10-diazaisowurtzitane(TEX, 9.28 km/s, 40.72 GPa). This compound has a comparable chemical stability to TEX, based on the N-NO2 trigger bond length analysis. The bond dissociation energy ranges from 153.09 kJ mol–1 to 186.04 kJ mol–1, which indicates that this compound meets the thermal stability requirement as an exploitable HEDM.  相似文献   

8.
A 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) /1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX)-isopropanol (IPA) interfacial model was constructed to investigate the effect of temperature on cocrystal morphology. A constant volume and temperature molecular dynamics (NVT-MD) simulation was performed on the interfacial model at various temperatures (295–355 K, 20 K intervals). The surface electrostatic potential (ESP) of the CL-20/HMX cocrystal structure and IPA molecule were studied by the B3LYP method at 6–311++G (d, p) level. The surface energies, polarities, adsorption energy, mass density distribution, radial distribution function (RDF), mean square displacement (MSD) and relative changes of attachment energy were analyzed. The results show that polarities of (1 0 0) and (0 1 1) cocrystal surfaces may be more negative and affected by IPA solvent. The adsorption energy per area indicates that growth of the (1 0–2) face in IPA conditions may be more limited, while the (1 0 0) face tends to grow more freely. MSD and diffusion coefficient (D) analyses demonstrated that IPA molecules gather more easily on the cocrystal surface at lower temperatures, and hence have a larger effect on the growth of cocrystal faces. RDF analysis shows that, with the increasing of temperature, the strength of hydrogen bond interactions between cocrystal and solvent becomes stronger, being highest at 335 K for the (1 0 0) and (0 1 1) interfacial models. Results of relative changes of modified attachment energy show that (1 0 0) and (0 1 1) faces tends to be larger than other faces. Moreover, the predicted morphologies at 295 and 355 K are consistent with experimental values, proving that the CL-20/HMX-IPA interfacial model is a reasonable one for this study.
Graphical Abstract Construction of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) /1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX)-isopropanol (IPA) interfacial model, analysis, and morphology prediction of cocrystal.
  相似文献   

9.
DFT calculations at the B3LYP/aug-cc-pVDZ level have been carried out to explore the structure, stability, electron density, heat of formation, detonation velocity and detonation pressure of substituted amino- and nitroso-1,2,4-triazol-5-one-N-oxides. Heats of formation of substituted triazol-5-one-N-oxides have been computed at the B3LYP/aug-cc-pVDZ level via isodesmic reaction procedure. Materials Studio 4.1 package was used to predict the crystal density of model compounds. Kamlet-Jacob equations were used to calculate detonation properties based on the calculated heat of explosion and crystal density. The designed compounds 4, 6, 7 and 8 have shown higher performance compared with those of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane and octanitrocubane. Atoms-in-molecule (AIM) analyses have also been carried out to understand the nature of intramolecular interactions in the designed molecules.  相似文献   

10.
We have explored the geometric and electronic structures, band gap, thermodynamic properties, density, detonation velocity and detonation pressure of aminopolynitropyrazoles using the density functional theory (DFT) at the B3LYP/aug-cc-pVDZ level. The calculated detonation velocity and detonation pressure, stability and sensitivity of model compounds appear to be promising compared to the known explosives 3,4-dinitro-1 H-pyrazole (3,4-DNP), 3,5-dinitro-1 H-pyrazole (3,5-DNP), hexahydro-1,3,5-trinitro-1,3,5-triazinane (RDX) and octahydro-1,3,5,7-tetranitro-l,3,5,7-tetraazocane (HMX). The position of NH2 group in the polynitropyrazoles presumably determines the structure, stability, sensitivity, density, detonation velocity and detonation pressure.  相似文献   

11.
The transformation of explosives, including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), by xenobiotic reductases XenA and XenB (and the bacterial strains harboring these enzymes) under both aerobic and anaerobic conditions was assessed. Under anaerobic conditions, Pseudomonas fluorescens I-C (XenB) degraded RDX faster than Pseudomonas putida II-B (XenA), and transformation occurred when the cells were supplied with sources of both carbon (succinate) and nitrogen (NH4 +), but not when only carbon was supplied. Transformation was always faster under anaerobic conditions compared to aerobic conditions, with both enzymes exhibiting a O2 concentration-dependent inhibition of RDX transformation. The primary degradation pathway for RDX was conversion to methylenedinitramine and then to formaldehyde, but a minor pathway that produced 4-nitro-2,4-diazabutanal (NDAB) also appeared to be active during transformation by whole cells of P. putida II-B and purified XenA. Both XenA and XenB also degraded the related nitramine explosives octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. Purified XenB was found to have a broader substrate range than XenA, degrading more of the explosive compounds examined in this study. The results show that these two xenobiotic reductases (and their respective bacterial strains) have the capacity to transform RDX as well as a wide variety of explosive compounds, especially under low oxygen concentrations.  相似文献   

12.
A series of azidamines were studied at the B3LYP/6-311+G(2df) level of density functional theory. Thermodynamic properties were calculated and increased quantitatively with the increasing temperature as well as the number of azido groups. The azidamines are highly energetic with large enthalpies of formation. The detonation performances of the azidamines were evaluated and their performances are comparable to those of hexahydro-1,3,5-trinitro-1,3,5-trizine and 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane. However, they are sensitive to impact as well as halogen azides according to the small potential energy barriers.  相似文献   

13.
A new polynitro cage compound with the framework of HNIW and a tetrazole unit, i.e., 10-(1-nitro-1, 2, 3, 4-tetraazol-5-yl)) methyl-2, 4, 6, 8, 12-hexanitrohexaazaisowurtzitane (NTz-HNIW) has been proposed and studied by density functional theory (DFT) and molecular mechanics methods. Properties such as IR spectrum, heat of formation, thermodynamic properties, and crystal structure were predicted. The compound belongs to the Pbca space group, with the lattice parameters a = 15.07 ?, b = 12.56 ?, c = 18.34 ?, Z = 8, and ρ = 1.990 g·cm-3. The stability of the compound was evaluated by the bond dissociation energies and results showed that the first step of pyrolysis is the rupture of the N–NO2 bond in the side chain. The detonation properties were estimated by the Kamlet-Jacobs equations based on the calculated crystal density and heat of formation, and the results were 9.240 km·s-1 for detonation velocity and 40.136 GPa for detonation pressure. The designed compound has high thermal stability and good detonation properties and is probably a promising high energy density compound (HEDC).  相似文献   

14.
The B3LYP/6-31G (d) method of density functional theory (DFT) was used to study molecular geometry, electronic structure, infrared spectrum (IR) and thermodynamic properties. The heat of formation (HOF) and calculated density were estimated to evaluate the detonation properties using Kamlet–Jacobs equations. Thermal stability of 3,5,7,10,12,14,15,16-octanitro- 3,5,7,10,12,14,15,16-octaaza-heptacyclo[7.5.1.12,8.01,11.02,6.04,13.06,11]hexadecane (cage-tetranitrotetraazabicyclooctane) was investigated by calculating the bond dissociation energy (BDE) at unrestricted B3LYP/6-31G (d) level. The calculated results show that the N–NO2 bond is a trigger bond during thermolysis initiation process. The crystal structure obtained by molecular mechanics (MM) methods belongs to Pna21 space group, with cell parameters a?=?12.840 Å, b?=?9.129 Å, c?=?14.346 Å, Z?=?6 and ρ?=?2.292 g·cm?3. Both the detonation velocity of 9.96 km·s?1 and the detonation pressure of 47.47 GPa are better than those of CL-20. According to the quantitative standard of energetics and stability, as a high energy density compound (HEDC), cage-tetranitrotetraazabicyclooctane essentially satisfies this requirement.  相似文献   

15.
A DFT study of aminonitroimidazoles   总被引:2,自引:0,他引:2  
Density functional theory (DFT) calculations at the B3LYP/aug-cc-pVDZ level were performed to explore the geometric and electronic structures, band gaps, thermodynamic properties, densities and performances of aminonitroimidazoles. The calculated performance properties, stabilities and sensitivities of the model compounds appear to be promising compared with those of the known explosives 2,4-dinitro-1H-imidazole (2,4-DNI), 1-methyl-2,4,5-trinitroimidazole (MTNI), hexahydro-1,3,5-trinitro-1,3,5-triazinane (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocane (HMX). The position of the NH2 or the number of NO2 groups on the diazole presumably determines the structure, heat of formation, stability, sensitivity, density and performance of the compound.  相似文献   

16.
The vapor–liquid coexistence curve of the simple point charge heavy-water model (SPC-HW), [J. Chem. Phys., 114, 8064–8067 (2001)] is determined by Gibbs Ensemble Monte-Carlo (GEMC) simulation. The estimated critical conditions of the model based on the Wegner-type expansion for the order parameters and the rectilinear diameter are ρc = 0.300 g/cc, T c = 661 K and P c = 156 bars. The dielectric constant determined by isothermal–isochoric molecular dynamics is underpredicted along the coexistence curve by 29–44% in comparison with the experimental values. The analysis of the orthobaric temperature dependence of the system microstructure, in terms of the three site–site radial distribution functions, indicates that the first coordination numbers for the oxygen–oxygen and the oxygen–deuterium interactions are ~4.3 ± 0.1 and ~1.9 ± 0.1 at T = 300 K, and decrease by 15 and 55%, respectively, at criticality. The dipole–dipole correlation functions show that the orientational order in heavy water is quickly lost beyond the first oxygen–oxygen coordination shell. The model's second virial coefficient is determined by Monte-Carlo integration and used to aid the interpretation of the predicted phase equilibrium results.  相似文献   

17.
The melt curve and the liquid-state transport properties shear viscosity, self-diffusion coefficient and thermal conductivity of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) were predicted using all-atom molecular dynamics simulations. The TATB melt curve was obtained using solid–liquid coexistence simulations and is in good accord with the Simon–Glatzel equation. The temperature dependencies of the shear viscosity and self-diffusion coefficient are predicted to obey Arrhenius behaviour for pressures up to P = 20 kbar. The thermal conductivity has a linear temperature dependence for P < 15 kbar and a linear density (ρ) dependence for ρ > 1200 kg m?3. At similar densities the shear viscosity of liquid TATB is close to the predictions for liquid nitromethane [58] but lower than the predictions for liquid HMX [24] and RDX [59]. The self-diffusion coefficient for TATB is predicted to be higher than predictions for nitromethane, HMX and RDX at similar densities. The conductivity of TATB is ≈20% greater than the conductivity of liquid HMX at a given density.  相似文献   

18.
We designed three novel cage energetic anions by introducing ionic bridges containing NΘ, N(OΘ) and N(NΘNO2) into cis-2,4,6,8-tetranitro-1H,5H-2,4,6,8- tetraazabicyclo[3.3.0] octane (bicyclo-HMX or BCMHX). The properties of 21 energetic salts, based on cage anions and ammonium-based cations, were studied by density functional theory (DFT) and volume-based thermodynamics (VBT) calculations. Compared to the parent nonionic BCHMX, most title salts have lower predicted impact sensitivities, higher predicted densities, larger predicted heats of formation (HOFs) and better predicted detonation properties. In particular, 11 energetic salts not only exhibit excellent predicted energetic properties, superior to 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20), but also have lower predicted sensitivity than CL-20. The best salt had a predicted detonation velocity of 10.06 km s?1, a predicted detonation pressure of 48.54 GPa and a predicted sensitivity (h50) of 23.99 cm. By introducing ionic bridges into highly nitrated rings, or modifying the original bridge with ionic bridges, some highly nitrated cage compounds with both excellent performance and low sensitivity can be developed strategically.
Graphical abstract Heats of detonation, detonation velocities, and detonation pressures of salts derived from bicyclo-HMX
  相似文献   

19.
Multi-tetrazole derivatives with conjugated structures were designed and investigated in this study. Using quantum chemistry methods, the crystal structures, electrostatic potentials (ESPs), multicenter bond orders, HOMO–LUMO energy gaps, and detonation properties of the derivatives were calculated. As expected, these molecules with conjugated structures showed low energies of their crystal structures, molecular layering in their crystals, high average ESPs, high multicenter bond order values, and enhanced detonation properties. The derivative 1,2-di(1H-tetrazol-5-yl)diazene (N2) was predicted to have the best density (1.87 g/cm3), detonation velocity (9006 m/s), and detonation pressure (36.8 GPa) of the designed molecules, while its total crystal energy was low, suggesting that it is relatively stable. Its sensitivity was also low, as the molecular stacking that occurs in its crystal allows external forces to be dissipated into movements of crystal layers. Finally, its multicenter bond order was high, indicating a highly conjugated structure.  相似文献   

20.
This study was conducted to develop sequential sampling plans to estimate leafmine density by Liriomyza sativae (Blanchard) at two fixed-precision levels in a cucumber greenhouse. The within-greenhouse spatial patterns of leafmines were aggregated. The slopes and intercepts of Taylor’s power law did not differ between years. A fixed-precision level sampling plan was developed using the parameters of Taylor’s power law generated from total number of leafmines in a cucumber leaf at two precision levels (D) of 0.1 and 0.25. The resulting sampling plans were tested with sequential bootstrap simulations (n = 500) using 10 independent data sets for validation. Bootstrap simulation within a wide range of densities demonstrated that actual D′ values at desired D = 0.25 averaged less than or equal to 0.25 in all cases. Even at the lowest density of leafmine (0.27 mine per leaf), the actual mean D′ was 0.24 at D = 0.25. This result shows that the sampling plan developed in this study is effective and reliable for estimating the mine densities in cucumber greenhouses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号