首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel amperometric lactate biosensor was developed based on immobilization of lactate dehydrogenase onto graphene oxide nanoparticles‐decorated pencil graphite electrode. The enzyme electrode was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), and cyclic voltammetry at different stages of its construction. The biosensor showed optimum response within 5 s at pH 7.3 (0.1 M sodium phosphate buffer) and 35°C, when operated at 0.7 V. The biosensor exhibited excellent sensitivity (detection limit as low as 0.1 μM), fast response time (5 s), and wider linear range (5–50 mM). Analytical recovery of added lactic acid in serum was between 95.81–97.87% and within‐batch and between‐batch coefficients of variation were 5.04 and 5.40%, respectively. There was a good correlation between serum lactate values obtained by standard colorimetric method and the present biosensor (r = 0.99). The biosensor measured lactate levels in sera of apparently healthy subjects and persons suffering from lactate acidosis and other biological materials (milk, curd, yogurt, beer, white wine, and red wine). The enzyme electrode lost 25% of its initial activity after 60 days of its regular uses, when stored dry at 4°C.  相似文献   

2.
Nanofluids are candidate materials for thermal management of heat transfer equipment. Practical applications of thermally enhanced nanofluids contribute to the reduction of weight of systems, leading to improved energy efficiency. Microsize particles sink into the systems because of gravity, therefore rendering the addition meaningless in terms of improving thermal properties. However, nanoparticles can be buoyant, leading to Brownian motion in the fluid, when they do not aggregate with each other. The most important factor in nanofluids is long-term stability of the dispersion in the fluid. Numerous studies have reported the dispersion stability; functional groups attached to nanoparticles play a role in causing steric hindrance and have an affinity for the surrounding fluid, resulting in preserving the dispersion. We investigate the structural effects on dispersion by molecular dynamics simulations of nanofluid containing graphene sheets with functional groups of varying lengths at the surface. The results demonstrate that short functional groups were too short to cause significant steric hindrance, while relatively longer functional groups tended to stack onto the graphene sheets, leading to trapping due to strong van der Waals interactions. Additionally, we discuss the minimum number of functional groups necessary for maintaining dispersion through calculations of the area of a single functional group.  相似文献   

3.
During the fermentation process from glycerol to 1,3-dihydroxyacetone (DHA) by Gluconobacter oxydans, the increase in the concentration of glycerol shows obvious inhibition on the cell growth and DHA production. Researches on the interaction mechanism between glycerol and glycerol dehydrogenase (sldha) are important to improve the conversion rate from glycerol to DHA and to enhance the strains tolerance to glycerol. At present, the 3D structure of sldha is still unknown. So we analysed the 3D structure and then found the binding sites of glycerol with sldha. In the present study, we constructed the 3D structure of sldha by the homology modelling method based on Modeller 9v6 software. Four proteins, 1yiqA, 1kb0A, 1kv9A and 1lrwA, from Protein Data Bank were chosen as templates, since they have the highest similarities with sldha in Protein Data Bank which is 38%, 37%, 39% and 38%, respectively. The molecular dynamics simulation of constructed 3D structure of sldha by Gromacs 4.0.5 was carried out. Finally, the binding sites of Ala715 and H719 were found through the molecular docking simulation between glycerol and sldha by using Autodock 4.2.  相似文献   

4.
Molecular dynamics simulations have been performed to characterise the stability behaviour of graphene nanoribbons having different hydrogen coverage, subject to a uniaxial compressive load. The temperature is set at a very low value to circumvent the contribution of thermal agitations. The results show that hydrogen coverage promotes to a rapid drop in the strain of buckling onset due to the effects of easy rotation of newly unsupported sp3 bonds. Furthermore, we have also found a critical value of the hydrogen adsorption above which the declining trend in the stability behaviour of hydrogenated graphene nanoribbons is reversed.  相似文献   

5.
In this study, molecular dynamics simulation is used to investigate the adsorption of an anticancer drug, doxorubicin, on bundles of functionalized single-walled carbon nanotubes (SWNTs) in an aqueous solution. Carboxylic group has been selected as the functional group. Molecular dynamics (MD) simulations are performed for both separated systems containing a SWNT bundle and a functionalized carbon nanotube bundle, and results are compared with existing experimental data. MD results show that doxorubicin can be adsorbed on CNTs using different methods such as entrapment within CNT bundle, attachment to the side wall of the CNT, and adsorption on the CNT inner cavity. For functionalized CNT, the adsorption of drugs on the functional groups is essential for predicting the enhancement of drug loading on the functionalized nanotubes. Furthermore, the adsorption behavior of doxorubicin on CNTs is fitted with Langmuir and Freundlich isotherm models. The results show that Langmuir model can predict the adsorption behavior of doxorubicin on CNTs more accurately than Freundlich model does. As predicted by this isotherm model, the adsorption process of doxorubicin on CNTs is relatively difficult, but it can be improved by increasing the functional groups on the CNTs surface.  相似文献   

6.
Development of new antimalarial drugs continues to be of huge importance because of the resistance of malarial parasite towards currently used drugs. Due to the reliance of parasite on glycolysis for energy generation, glycolytic enzymes have played important role as potential targets for the development of new drugs. Plasmodium falciparum lactate dehydrogenase (PfLDH) is a key enzyme for energy generation of malarial parasites and is considered to be a potential antimalarial target. Presently, there are nearly 15 crystal structures bound with inhibitors and substrate that are available in the protein data bank (PDB). In the present work, we attempted to consider multiple crystal structures with bound inhibitors showing affinity in the range of 1.4 × 102–1.3 × 106 nM efficacy and optimized the pharmacophore based on the energy involved in binding termed as e-pharmacophore mapping. A high throughput virtual screening (HTVS) combined with molecular docking, ADME predictions and molecular dynamics simulation led to the identification of 20 potential compounds which could be further developed as novel inhibitors for PfLDH.  相似文献   

7.
In this study, the interaction thioguanine (TG) anticancer drug with the functionalized graphene oxide (GO) nanosheet surface is theoretically studied in both gas phase and separately in physiological media using the density functional theory (DFT) calculations. DFT calculations indicated the adsorption and solvation energies are negative for f-GONS/TG complexes which propose the adsorption process of TG molecule onto the f-GONS surface is possible from the energetic viewpoint. QTAIM calculations confirm the nature of partially covalent-partially electrostatic between drug and nanosheet. These results are sorely relevant that an approach for loading of TG molecule is the chemical modification of GO using covalent functionalization which can serve as a nanocarrier to load drug molecules. Moreover, to understand the effect of urea on the nature of the interaction between TG and f-GONS, molecular dynamics (MD) simulation was employed. The results indicated that in the presence of urea the adsorption process gets affected and leads to instability of system, while the affinity of the TG for adsorption onto GO surface is increased in pure water.

Communicated by Ramaswamy H. Sarma  相似文献   


8.
The area coefficients of thermal expansion (CTEs) of perfect single layer graphene sheet (SLGS) and SLGS with vacancy defects of different distributions were calculated in this work through molecular dynamics (MD) simulations. The effects of some parameters such as temperature, SLGS size, sample area size, vacancy fraction and vacancy distribution on CTE were investigated extensively. Numerical results clearly revealed that for both perfect and defective SLGSs, the area CTEs are negative and nonlinear with the temperature variation within a wide temperature range. Moreover, the area CTEs tend to be more insensitive to the temperature when temperature is higher than 600 K. The area CTE of a perfect SLGS converges only when the SLGS size and the ratio of the sample size to the SLGS size is above a critical value. When the SLGS size or the sample size is small, the area CTE shows distinct size-dependence. In addition, a set of empirical formulations is proposed for evaluating the area CTEs of perfect SLGSs within a wide temperature range. For the SLGS with vacancy defects, the area CTE decreases with the increase of vacancy fraction within the temperature range considered. Furthermore, compared with a decentralised distribution of vacancy defects, a concentrated distribution leads to a smaller value of area CTE of SLGS, especially for the case of high vacancy fraction.  相似文献   

9.
Adhesive contacts between graphene sheet (GS) and corrugated substrates made of an ordered array of atomic pillars with variable geometries were investigated by molecular dynamics simulations. Depending on the height and interval distance of the pillars, GS can conformably coat the surface, partially adhere, or remain flat on top of the pillars. The relationship between the geometries of the pillar and the final adhesion configurations of GS was partially established. A critical adsorption energy was determined to achieve stable adsorption configuration of GS on corrugated substrates made of ordered pillar arrays. Besides the geometries of pillars, the effects of initial coating angle of GS were also considered as an important factor that affects the final adsorption configuration. We observed two interesting morphologies of GS, ‘I shape’ and ‘L shape’, which were determined by the initial coating angles.  相似文献   

10.
This study investigated nanojet processes by a non-equilibrium molecular dynamics simulation. The phenomena of liquid thread break-up and droplet formation were simulated by compressing liquid propane molecules with various compressing velocities. Properties' distributions show that, at the nanoscale, density and pressure were neither uniform nor continuous during the ejection process. Shear heating phenomena were found in the contact area of the nozzle channel. A linear relationship between the length of liquid threads and the compressing velocity was also found in this study. The results from different trials using various compressing velocities show that higher compressing velocities in nanojet processes result in longer liquid thread lengths and liquid molecules with higher energy levels. Therefore, the ejection process is more unstable, resulting in an increase in the number of evaporating molecules and satellite droplets. Results that illustrate various features are presented to aid in the comprehension of the nanojet processes.  相似文献   

11.
In this paper, the formation of nanodroplets in piezoelectric nanoejection processes is investigated by non-equilibrium molecular dynamics simulation. By compressing liquid propane molecules with various specific pushing periods of oscillation, the phenomena of liquid thread breakup and droplet formation are simulated. The simulation results revealed that various features aid the piezoelectric nanoejection system. Two breakup shapes including double-cone and long tail structures were found in this process. To analyse the ejection process in detail, 2D contour plots and thermal properties for various pushing periods are shown and discussed in this paper. The results show that the sizes of nanodroplets are linear depending on the pushing periods. The findings show a new control factor and mechanism for nanodroplet formation through piezoelectric nanoejection processes.  相似文献   

12.
This study was carried out to evaluate the stability of the 89 bound water molecules that were observed in the neutron diffraction study of CO myoglobin. The myoglobin structure derived from the neutron analysis was used as the starting point in the molecular dynamics simulation using the software package CHARMM. After solvation of the protein, energy minimization and equilibration of the system, 50 ps of Newtonian dynamics was performed. This data showed that only 4 water molecules are continously bound during the length of this simulation while the other solvent molecules exhibit considerable mobility and are breaking and reforming hydrogen bonds with the protein. At any instant during the simulation, 73 of the hydration sites observed in the neutron structure are occupied by water. © 1995 Wiley-Liss, Inc.  相似文献   

13.
We performed molecular dynamics (MD) simulations of water-in-oil droplet shape transformations induced by the addition of polymer chains. In a prior experiment, transformations of spherical droplets to rod-like, worm-like and network-like droplets were observed. In our previous study, we reproduced rod-like droplets via coarse-grained MD simulations, and the mechanism for the droplet shape change was elucidated by considering the contact area between the chains and the surfactant head groups. However, in that simulation model, we could not reproduce the worm-like and network-like droplets. In this study, we improved the simulation model. For a small number of chains, several spherical droplets were obtained. As the number of chains increased, the spherical droplets were transformed to rod-like, worm-like and network-like shapes by coalescence of the droplets. The calculated and experimental results agreed well, and we verified that the mechanism for the droplet shape transformations observed in the present simulations could be explained by the mechanism suggested in the previous study.  相似文献   

14.
Methane (CH4) hydrate dissociation and the mechanism by depressurisation are investigated by molecular dynamics (MD) simulation. The hydrate decomposition processes are studied by the ‘vacuum removal method’ and the normal method. It is found that the hydrate decomposition is promoted by depressurisation. The quasi-liquid layer is formed in the hydrate surface layer. The driving force of dissociation is found to be controlled by the concentration gradient between the H2O molecules of the hydrate surface layer and the H2O molecules of the hydrate inner layer. The clathrates collapse gradually, and the hydrate decomposes layer by layer. Relative to our previous MD simulation results, this study shows that the rate of the hydrate dissociation by depressurisation is slower than that by the thermal stimulation and the inhibitor injection. This study illustrated that MD simulation can play a significant role in investigating the hydrate decomposition mechanisms.  相似文献   

15.
This work demonstrates that our previously developed technique for single-erythrocyte analysis by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) can be applied to study individual lymphocytes, with some modification in the cell lysing procedure. A tesla coil was shown to be capable of lysing the lymphocyte cells inside the capillary. The electromagnetic field induced by the tesla coil was believed to be responsible for breaking the cell membrane. The lactate dehydrogenase (LDH) isoenzyme activities and the relative ratios between different LDH isoenzymes were measured for normal lymphocytes as well as B-type and T-type acute lymphoblastic leukemia cells. Both the LDH activity and the isoenzyme ratios show large variations among individual cells. The former is expected due to variations in cell size. The latter implies that single-cell measurements are less useful than the average values over a cell population as markers for leukemia.  相似文献   

16.
The isothermal crystallisation of polyethylene (PE) chains around single PE lamella in vacuum is investigated by molecular dynamic simulation. The crystallisation process is analysed in terms of the orientational order parameters, principal moments of inertia for the simulated systems. The effects of charge interactions between the polymer chains and lamella are discussed. It is found that the crystallisation process for uncharged systems can be divided into three stages: (1) adsorption, (2) orientation and (3) arrangement. The single polymer lamella changes a little during the three stages. PE chains are arranged parallel to the chain direction of the stems in the crystalline state. When considering the effect of charge interactions between the polymer chains and lamella, a different crystallisation process appears. The single polymer lamella is affected by the charged polymer chains.  相似文献   

17.
We present molecular dynamics simulations of monolayer graphene under uniaxial tensile loading. The Morse, bending angle, torsion and Lennard-Jones potential functions are adopted within the mdFOAM library in the OpenFOAM software, to describe the molecular interactions in graphene. A well-validated graphene model using these set of potentials is not yet available. In this work, we investigate the accuracy of the mechanical properties of graphene when derived using these simpler potentials, compared to the more commonly used complex potentials such as the Tersoff-Brenner and AIREBO potentials. The computational speed up of our approach, which scales O(1.5N), where N is the number of carbon atoms, enabled us to vary a larger number of system parameters, including graphene sheet orientation, size, temperature and concentration of nanopores. The resultant effect on the elastic modulus, fracture stress and fracture strain is investigated. Our simulations show that graphene is anisotropic, and its mechanical properties are dependant on the sheet size. An increase in system temperature results in a significant reduction in the fracture stress and strain. Simulations of nanoporous graphene were created by distributing vacancy defects, both randomly and uniformly, across the lattice. We find that the fracture stress decreases substantially with increasing defect density. The elastic modulus was found to be constant up to around 5% vacancy defects, and decreases for higher defect densities.  相似文献   

18.
Molecular dynamics simulations were performed for the hexameric nanocubes of methylated (16) and demethylated (26) gear-shaped amphiphiles in pure methanol to reveal the difference in structural fluctuation between 16 and 26. Within our simulation time of 2.0 ns, the cubic structure of 16 in methanol is maintained, whereas that of 26 is collapsed. We found that the triple π-stacking moieties consisting of the three 3-pyridyl groups in 26 are more fluctuated than those in 16. This suggests that methyl groups serve to reduce structural fluctuation for nanocubes. We also found that the existence of the solvent molecules near the nanocube is an important factor for the collapse of the 26 structure.  相似文献   

19.
Molecular dynamics simulation was performed to analyse the phenomena of replacement of methane hydrate with carbon dioxide (CO2) at 270 K and 5.0 MPa for 5300 ps. The methane hydrate phase was constructed with 16 unit cells of hydrate. Every cage in the hydrate was occupied by one methane molecule. The methane hydrate phase was sandwiched between two CO2 phases. During the simulation the hydrate partially melted and liquid water phase appeared, and CO2 dissolved in the liquid water phase. The replacements were observed three times at the hydrate–liquid water interface during the simulation. In the first case, the replacement occurred at a S-cage without changing the structure. In the second case, an M-cage of methane hydrate partially collapsed, and methane and CO2 molecules exchanged. After the exchange, the cage occupied by CO2 remained in the M-cage structure. In the third case, a S-cage of methane hydrate partially collapsed, and methane and CO2 molecules exchanged. After the exchange, the cage occupied by CO2 changed to an M-cage-like structure.  相似文献   

20.
RNA was isolated from rat liver and heart tissues at various times up to 12 weeks after birth, and probed on slot blots with lactate dehydrogenase A and B cDNA probes. Although the relative abundances of LDH A in liver and LDH B in heart increased substantially in the 12 weeks after birth, mRNAs for both isoenzymes remained remarkably stable in both tissues over the same period. The implications of these observations for the regulation of constitutive gene expression are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号