首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On‐site identification and quantification of chemicals is critical for promoting food safety, human health, homeland security risk assessment, and disease diagnosis. Surface‐enhanced Raman spectroscopy (SERS) has been widely considered as a promising method for on‐site analysis due to the advantages of nondestructive, abundant molecular information, and outstanding sensitivity. However, SERS for on‐site application has been restricted not only by the cost, performance, and portability of portable Raman instruments, but also by the sampling ability and signal enhancing performance of the SERS substrates. In recent years, the performance of SERS for on‐site analysis has been improved through portable Raman instruments, SERS substrates, and other combined technologies. In this review, popular commercial portable Raman spectrometers and the related technologies for on‐site analysis are compared. In addition, different types of SERS substrates for on‐site application are summarized. SERS combined with other technologies, such as electrochemical and microfluidics are also presented. The future perspective of SERS for on‐site analysis is also discussed.  相似文献   

2.
The existence of an “RNA world” as an early step in the history of life increases the interest for the characterization of these biomolecules. The hairpin ribozyme studied here is a self‐cleaving/ligating motif found in the minus strand of the satellite RNA associated with Tobacco ringspot virus. Surface‐enhanced Raman spectroscopy (SERS) is a powerful tool to study trace amounts of RNA. In controlled conditions, a SERS signal is proportional to the amount of free residues adsorbed on the metal surface. On RNA cleavage, residues are unpaired and free to interact with metal. SERS procedures are used to monitor and quantify the catalysis of ribozyme cleavage at biological concentrations in real time; thus, they propose an interesting alternative to electrophoretic methods. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 384–390, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

3.
The ability of DNA to bind polycation yielding polyplexes is widely used in nonviral gene delivery. The aim of the present study was to evaluate the DNA compaction with a new DNA vector using Raman spectroscopy. The polyplexes result from an association of a beta-cyclodextrin polymer (polybeta-CD), an amphiphilic cationic connector (DC-Chol or adamantane derivative Ada2), and DNA. The charge of the polymeric vector is effectively controlled by simple addition of cationic connector in the medium. We used surface enhanced Raman spectroscopy (SERS) to characterize this ternary complex, monitoring the accessibility of adenyl residues to silver colloids. The first experiments were performed using model systems based on polyA (polyadenosine monophosphate) well characterized by SERS. This model was then extended to plasmid DNA to study polybeta-CD/Ada2/DNA and polybeta-CD/DC-Chol/DNA polyplexes. The SERS spectra show a decrease of signal intensity when the vector/DNA charge ratio (Z+/-) increases. At the highest ratio (Z+/- = 10) the signal is 6-fold and 3-fold less intense than the DNA reference signal for Ada2 and DC-Chol polyplexes, respectively. Thus adenyl residues have a reduced accessibility as DNA is bound to the vector. Moreover, the SERS intensity variations are in agreement with gel electrophoresis and zeta potential experiments on the same systems. The overall study clearly demonstrates that the cationic charges neutralizing the negative charges of DNA result in the formation of stable polyplexes. In vitro transfection efficiency of those DNA vectors are also presented and compared to the classical DC-Chol lipoplexes (DC-Chol/DNA). The results show an increase of the transfection efficiency 2-fold higher with our vector based on polybeta-CD.  相似文献   

4.
This work demonstrates the feasibility of using Raman spectroscopy for the analysis of small quantities of chemically similar oligosaccharides and their mixtures. Raman spectra were obtained from 10-microL aliquots of 1 mM solutions of maltotetraose and/or stachyose after deposition onto an electrochemically roughened silver substrate (and the resulting spectral features are attributed to a combination of normal and surface-enhanced Raman scattering). These compounds were selected because they are representative of glycans derived from post-translationally modified proteins which, like these compounds, often consist of isomers of equal mass and similar shape. Replicate spectral measurements were recorded and processed using a partial-least-squares (PLS) classification and quantification algorithms with a leave-one-batch-out (LOBO) training and testing procedure. Spectra derived from solutions of individual sugars were identified with 100% accuracy, and mixtures of the two sugars were quantified with an average error of 2.7% in the relative maltotetraose/stachyose composition for mixtures with a total oligosaccharide concentration of 1 mM.  相似文献   

5.
For the screening purposes urine is an especially attractive biofluid, since it offers easy and noninvasive sample collection and provides a snapshot of the whole metabolic status of the organism, which may change under different pathological conditions. Raman spectroscopy (RS) has the potential to monitor these changes and utilize them for disease diagnostics. The current study utilizes mouse models aiming to compare the feasibility of the urine based RS combined with chemometrics for diagnosing kidney diseases directly influencing urine composition and respiratory tract diseases having no direct connection to urine formation. The diagnostic models for included diseases were built using principal component analysis with linear discriminant analysis and validated with a leave‐one‐mouse‐out cross‐validation approach. Considering kidney disorders, the accuracy of 100% was obtained in discrimination between sick and healthy mice, as well as between two different kidney diseases. For asthma and invasive pulmonary aspergillosis achieved accuracies were noticeably lower, being, respectively, 77.27% and 78.57%. In conclusion, our results suggest that RS of urine samples not only provides a solution for a rapid, sensitive and noninvasive diagnosis of kidney disorders, but also holds some promises for the screening of nonurinary tract diseases.  相似文献   

6.
Both acute nephritis and chronic nephritis account for substantial morbidity and mortality worldwide, partly due to the lack of reliable tools for detecting disease early and monitoring its progression non‐invasively. In this work, Raman spectroscopy coupled with multivariate analysis are employed for the first time to study the accelerated progression of nephritis in anti‐GBM mouse model. Preliminary results show up to 98% discriminant accuracy for the severe and midly diseased and the healthy among two strains of mice with different susceptibility to acute glomerulonephritis. This technique has the potential for non‐invasive or minimally‐invasive early diagnosis, prognosis, and monitoring of renal disease progression.

  相似文献   


7.
In this work, Raman spectroscopy (RS) was employed to characterize molecular structures of [Arg8]vasopressin (AVP) and its [Acc2,D-Arg8]AVP, [Acc3]AVP, and [Cpa1, Acc3]AVP analogues. The RS band assignments have been proposed. To determine the mechanism of adsorption of the above-mentioned compounds adsorbed on a colloidal silver surface, surface-enhanced Raman spectra (SERS) were measured. The SERS spectra were used to determine relative proximity of the adsorbed functional groups of [corrected] investigated peptides and their orientation on the silver surface. The AVP and [Acc3]AVP SERS spectra (Acc: 1-aminocyclohexane-1-carboxylic acid) show that the L-tyrosine (Tyr) lies far from the metal surface, whereas the [Cpa1,Acc3]AVP spectrum (Cpa: 1-mercaptocyclohexaneacetic acid) provides evidence that Tyr interacts with the silver surface. These results suggest that [corrected] the binding of the Tyr-ionized phenolic group might be responsible for the selectivity of the analogues. We show that the aromatic ring of L-phenylalanine (Phe) of AVP and [Acc2,D-Arg8]AVP interacts with the silver surface. The strength of this interaction is considerably weaker for [Acc2,D-Arg8]AVP than for AVP. This might be due either to a longer distance between the Phe ring and the silver surface, or to the almost perpendicular orientation of the Phe ring towards the surface. The carbonyl group of the L-glutamine [corrected] (Gln) or L-asparagine [corrected](Asn) of AVP, [Acc2,D-Arg8]AVP, and [Acc3]AVP is strongly bound to the silver surface. We have also found that all peptides adsorb on the silver surface via sulfur atoms of the disulfide bridge, adopting a "GGG" conformation, except [Cpa1,Acc3]AVP, which accepts a "TGG" geometry.  相似文献   

8.
For several decades, a multitude of studies have documented the ability of Raman spectroscopy (RS) to differentiate between tissue types and identify pathological changes to tissues in a range of diseases. Furthermore, spectroscopists have illustrated that the technique is capable of detecting disease‐specific alterations to tissue before morphological changes become apparent to the pathologist. This study draws comparisons between the information that is obtainable using RS alongside immunohistochemistry (IHC), since histological examination is the current GOLD standard for diagnosing a wide range of diseases. Here, Raman spectral maps were generated using formalin‐fixed, paraffin‐embedded colonic tissue sections from healthy patients and spectral signatures from principal components analysis (PCA) were compared with several IHC markers to confirm the validity of their localizations. PCA loadings identified a number of signatures that could be assigned to muscle, DNA and mucin glycoproteins and their distributions were confirmed with antibodies raised against anti‐Desmin, anti‐Ki67 and anti‐MUC2, respectively. The comparison confirms that there is excellent correlation between RS and the IHC markers used, demonstrating that the technique is capable of detecting compositional changes in tissue in a label‐free manner, eliminating the need for antibodies.   相似文献   

9.
On-line monitoring tools for downstream chromatographic processing (DSP) of biotherapeutics can enable fast actions to correct for disturbances in the upstream, gain process understanding, and eventually lead to process optimization. While UV/Vis spectroscopy is mostly assessing the protein's amino acid composition and the application of Fourier transform infrared spectroscopy is limited due to strong water interactions, Raman spectroscopy is able to assess the secondary and tertiary protein structure without significant water interactions. The aim of this work is to implement the Raman technology in DSP, by designing an in-line flow cell with a reduced dead volume of 80 μL and a reflector to increase the signal intensity as well as developing a chemometric modeling path. In this context, measurement settings were adjusted and spectra were taken from different chromatographic breakthrough curves of IgG1 in harvest. The resulting models show a small average RMSEP of 0.12 mg/mL, on a broad calibration range from 0 to 2.82 mg/mL IgG1. This work highlights the benefits of model assisted Raman spectroscopy in chromatography with complex backgrounds, lays the fundamentals for in-line monitoring of IgG1, and enables advanced control strategies. Moreover, the approach might be extended to further critical quality attributes like aggregates or could be transferred to other process steps.  相似文献   

10.
The key moment for efficiently and accurately diagnosing dementia occurs during the early stages. This is particularly true for Alzheimer's disease (AD). In this proof‐of‐concept study, we applied near infrared (NIR) Raman microspectroscopy of blood serum together with advanced multivariate statistics for the selective identification of AD. We analyzed data from 20 AD patients, 18 patients with other neurodegenerative dementias (OD) and 10 healthy control (HC) subjects. NIR Raman microspectroscopy differentiated patients with more than 95% sensitivity and specificity. We demonstrated the high discriminative power of artificial neural network (ANN) classification models, thus revealing the high potential of this developed methodology for the differential diagnosis of AD. Raman spectroscopic, blood‐based tests may aid clinical assessments for the effective and accurate differential diagnosis of AD, decrease the labor, time and cost of diagnosis, and be useful for screening patient populations for AD development and progression.

Multivariate data analysis of blood serum Raman spectra allows for the differentiation between patients with Alzheimer's disease, other types of dementia and healthy individuals.  相似文献   


11.
Monte Carlo (MC) modeling is a valuable tool to gain fundamental understanding of light-tissue interactions, provide guidance and assessment to optical instrument designs, and help analyze experimental data. It has been a major challenge to efficiently extend MC towards modeling of bulk-tissue Raman spectroscopy (RS) due to the wide spectral range, relatively sharp spectral features, and presence of background autofluorescence. Here, we report a computationally efficient MC approach for RS by adapting the massively-parallel Monte Carlo eXtreme (MCX) simulator. Simulation efficiency is achieved through “isoweight,” a novel approach that combines the statistical generation of Raman scattered and Fluorescence emission with a lookup-table-based technique well-suited for parallelization. The MC model uses a graphics processor to produce dense Raman and fluorescence spectra over a range of 800 − 2000 cm−1 with an approximately 100× increase in speed over prior RS Monte Carlo methods. The simulated RS signals are compared against experimentally collected spectra from gelatin phantoms, showing a strong correlation.  相似文献   

12.
The characteristic vibrational spectroscopic fingerprint of Raman reporter molecules adsorbed on noble metal nanoparticles is employed for the identification of target proteins by the corresponding surface‐enhanced Raman scattering (SERS) nanotag‐labeled antibodies. Here, we present the modular synthesis of thiolated polyenes with two to five C═C double bonds introduced via stepwise Wittig reactions. The experimental characterization of their electronic and vibrational properties is complemented by density functional theory calculations. Highly SERS‐active nanotags are generated by using the thiolated polyenes as Raman reporter molecules in Au/Au core/satellite supraparticles with multiple hot spots. The cytokines IL‐1β and IFN‐γ are detected in a duplex SERS‐based lateral flow assay on a nitrocellulose test strip by Raman microscopy. The thiolated polyenes are suitable for use in immuno‐SERS applications such as point‐of‐care testing as well as cellular and tissue imaging.  相似文献   

13.
The detection of traces of substances by surface-sensitive techniques such as surface enhanced Raman spectroscopy (SERS) explores the interaction of adsorbed molecules on plasmonic surfaces to improve the limit of detection of analytes. This article is an overview about recent development in SERS substrates applied in the detection of organophosphorus pesticides on plasmonic surfaces (arrays of metal nanoparticles). The morphology, roughness, chemical functionalization degree, and aggregation level of plasmonic centers are some of the critical parameters to be controlled in the optimization of SERS signal from specific analytes.  相似文献   

14.
Spontaneous Raman micro‐spectroscopy has been demonstrated great potential in delineating tumor margins; however, it is limited by slow acquisition speed. We describe a superpixel acquisition approach that can expedite acquisition between ~×100 and ×10 000, as compared to point‐by‐point scanning by trading off spatial resolution. We present the first demonstration of superpixel acquisition on rapid discrimination of basal cell carcinoma tumor from eight patients undergoing Mohs micrographic surgery. Results have been demonstrated high discriminant power for tumor vs normal skin based on the biochemical differences between nucleus, collagen, keratin and ceramide. We further perform raster‐scanned superpixel Raman imaging on positive and negative margin samples. Our results indicate superpixel acquisition can facilitate the use of Raman microspectroscopy as a rapid and specific tool for tumor margin assessment.  相似文献   

15.
Using the shifted-excitation Raman difference spectroscopy technique and an optical fibre featuring a negative curvature excitation core and a coaxial ring of high numerical aperture collection cores, we have developed a portable, background and fluorescence free, endoscopic Raman probe. The probe consists of a single fibre with a diameter of less than 0.25 mm packaged in a sub-millimetre tubing, making it compatible with standard bronchoscopes. The Raman excitation light in the fibre is guided in air and therefore interacts little with silica, enabling an almost background free transmission of the excitation light. In addition, we used the shifted-excitation Raman difference spectroscopy technique and a tunable 785 nm laser to separate the fluorescence and the Raman spectrum from highly fluorescent samples, demonstrating the suitability of the probe for biomedical applications. Using this probe we also acquired fluorescence free human lung tissue data.  相似文献   

16.
This paper comments recent findings about Raman spectroscopy application for in vivo noninvasive diabetes detection, published in the Journal of Biophotonics by E. Guevara et al. (J. Biophotonics 2022 , 15, e202200055). The proposed results may be not entirely correct due to possible overestimation of classification models and absence of additional information regarding age of tested volunteers.  相似文献   

17.
目的:制备对硝基苯硫酚(4-Nitrobenzenethiol,4-NBT)分子内嵌的星形表面增强拉曼散射(Surface enhanced Raman Scattering,SERS)金"套娃"纳米颗粒,测定其拉曼增强效果和应用于细胞以及活体肿瘤拉曼影像的可行性。方法:以种子介导法先后制备金纳米星及星形SERS金"套娃"纳米颗粒,采用透射电镜观察其形貌,激光粒度分析仪测定其粒径及Zeta电位,拉曼光谱仪测定其拉曼光谱,考察其对A549细胞的拉曼成像效果,建立A549皮下瘤模型,考察其对活体皮下瘤的成像效果。结果:制备并优化的金纳米星粒径较小,为60.5 nm,其针尖密度较高,以此为核心制备的星形SERS金"套娃"纳米颗粒形态规整,粒径约为66.7nm,Zeta电位约为-16.6 m V,拉曼增强效果提升至其前驱体金纳米星的5.3倍,能够实现对A549细胞及A549皮下瘤的拉曼成像。结论:所制备的星形SERS金"套娃"纳米颗粒形态规整均一,拉曼增强效果较好,能实现对细胞及活体肿瘤的拉曼影像。  相似文献   

18.
Time-resolved surface enhanced Raman scattering (TRSERS) spectroscopic methods are discussed for the study of radical ions produced photochemically and electrochemically at silver or gold metal surfaces. Both single shot and pump-probe TRSERS experimental methods are illustrated which use an optical multichannel analyzer, OMA, for ms (single shot) to ns (pump-probe) time resolution. Fundamental chemical and physical processes for photochemically and electrochemically induced radical ion formation are described for adsorbed molecules at the metal-solution interface. Emphasis is given to the possibility of laser photoinduced radical ion formation by a direct molecule-to-metal charge transfer process. Applications of TRSERS techniques are discussed for the study of radical ions formed by various photochemical and electrochemical reactions at the surface of SERS active metals. These adsorbed reaction systems encompass electroreduction processes of adsorbed alkylviologens, p-nitrobenzoate, 4-cyanopyridine, 4-pyridine carboxaldehyde, 4-hydroxymethylpyridine, and direct photoinduced radical cation formation from flavin mononucleotide, FMN.  相似文献   

19.
Cell (A549)-particle (Jasada Bhasma) interactions using Raman spectroscopy   总被引:1,自引:0,他引:1  
Current methods for the evaluation of cell interactions with particles are nonspecific, slow, and invasive to the cells. Raman spectroscopy is a noninvasive technique, and is used in the present study to investigate particle-cell interactions. The main focus of the present study is to employ Raman spectroscopy for investigating the interaction of human lung adenocarcinoma cell line (A549) with the particulate system Jasada Bhasma, a traditional Indian medicine. Jasada Bhasma is a unique preparation of zinc and is traditionally used for the treatment of various diseases like diabetes, age-related eye diseases, and as a health promotional tonic. The Raman spectral analysis is executed by identifying the difference in intracellular DNA/RNA, and proteins and lipids concentration between particles--treated and untreated cells. Comparison between Bhasma-treated and -untreated cells indicates that vibrational peaks corresponding to the DNA/RNA molecule show a significant increase in cells treated with the Jasada Bhasma. Apart from the DNA molecule, several other vibrational peaks related to the protein molecules also show a significant increase in A549 cells after treatment with Bhasma. These results indicate that Bhasma treatment of A549 possibly delays DNA degradation and enables retention of higher amount of protein molecules in the cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号