首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The association of spermine(4+) (Spm(4+)), Mg(2+) and monovalent (M(+)) ions with DNA in crystal form, have been studied using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) computer simulations. GCMC calculations were used to calculate the distribution of Spm(4+), Mg(2+), and M(+) between the equilibrating solvent and the DNA crystal under conditions mimicking the crystal-growing protocols reported in a number of recent X-ray diffraction studies of DNA oligomers. The GCMC simulations show that the composition of ions neutralizing the negative charge of DNA can vary in a broad range. The GCMC simulations were used to provide appropriate conditions for subsequent 6 ns constant pressure and temperature MD simulations of DNA in a typical crystalline environment consisting of three DNA double helix decamers in a periodic hexagonal cell, containing 1200 water molecules, eight Spm(4+), 32 Na(+) and four Cl(-) ions. Based on the simulation results, it seems possible to give an explanation why spermine molecules are usually not detected in X-ray studies in spite of their high concentration in the preparatory samples used as the crystallizing agent. It appears that this flexible polyamine molecule has several binding modes, interacting in fairly irregular manner with different sites on DNA and showing no regular ordering in the DNA crystals. Ions of Na(+) and Spm(4+) compete with each other and with water molecules in binding to bases in the minor groove and they influence the structure of the DNA hydration shell in different ways.  相似文献   

2.
It is important to gain a physical understanding of ion transport through the voltage-dependent anion channel (VDAC) because this channel provides primary permeation pathways for metabolites and electrolytes between the cytosol and mitochondria. We performed grand canonical Monte Carlo/Brownian dynamics (GCMC/BD) simulations to explore the ion transport properties of human VDAC isoform 1 (hVDAC1; PDB:2K4T) embedded in an implicit membrane. When the MD-derived, space-dependent diffusion constant was used in the GCMC/BD simulations, the current-voltage characteristics and ion number profiles inside the pore showed excellent agreement with those calculated from all-atom molecular-dynamics (MD) simulations, thereby validating the GCMC/BD approach. Of the 20 NMR models of hVDAC1 currently available, the third one (NMR03) best reproduces both experimental single-channel conductance and ion selectivity (i.e., the reversal potential). In addition, detailed analyses of the ion trajectories, one-dimensional multi-ion potential of mean force, and protein charge distribution reveal that electrostatic interactions play an important role in the channel structure and ion transport relationship. Finally, the GCMC/BD simulations of various mutants based on NMR03 show good agreement with experimental ion selectivity. The difference in ion selectivity between the wild-type and the mutants is the result of altered potential of mean force profiles that are dominated by the electrostatic interactions.  相似文献   

3.
Here we review our simulations of adsorption on metal–organic frameworks (MOFs) and platinum (Pt) catalysts, focusing on the modelling methods required to understand these two very different systems. MOFs are porous, crystalline materials with large surface areas, which are promising for a variety of adsorption applications. We review our simulations of gas uptake in PCN-53 (porous coordination network) as well as gas storage in MOFs functionalised with metal alkoxide sites. While fluid–solid interactions in both systems can be modelled quite well using algebraic force fields, the alkoxide sites in the functionalised MOFs require specialised versions, in order to describe the stronger adsorption energies. We discuss grand canonical Monte Carlo (GCMC) simulations of both systems. Pt is a common catalyst, and simulations have proven quite useful for providing molecular level details to understand its functionality. This involves understanding adsorption phenomena, which often requires quantum mechanical calculations. We describe our periodic boundary condition density functional theory (DFT) simulations of Pt-catalysed NO oxidation, focusing on adsorbate geometries and coverage effects. Finally, we describe one of the current ‘grand challenges’ in molecular simulations of adsorption, modelling catalytic activity in aqueous phase, which requires a combination of algebraic force fields, DFT and GCMC.  相似文献   

4.
We have studied the adsorption of argon at 87 K in slit pores of finite length with a smooth graphitic potential, open at both ends or closed at one end. Simulations were carried out using conventional GCMC (grand canonical Monte Carlo) or kMC (kinetic Monte Carlo) in the canonical ensemble with extremely long Markov chain, of at least 2 × 108 configurations; selected simulations with much longer Markov chains do not show any change in the results. When the pore width is in the micropore range (0.65 nm), type I isotherms are obtained for both pore models and for both simulation methods. However, wider pores (1, 2 and 3 nm in width) all exhibit hysteresis loops in the GCMC simulations, while in the canonical ensemble simulations, the isotherms pass through a sigmoid van der Waals type loop in the transition region. This loop locates the true equilibrium transition. For the pores with one closed end, this transition is close to, or coincides with, the adsorption branch of the GCMC hysteresis loop, but for the open-ended pores, it is more closely associated with the desorption branch. In a separate study of adsorption hysteresis in an infinitely long slit pore, using both simulation techniques, the van der Waals loop follows the adsorption branch of the GCMC isotherm to the transition, then reverts to a long vertical section that falls midway between the two hysteresis branches and finally moves to the desorption transition close to the evaporation pressure. An examination of molecular distributions inside the pores reveals two coexisting phases in the canonical simulations, whereas in the grand canonical simulations, the molecules are uniformly distributed along the length of the pores.  相似文献   

5.
The recently published crystal structure of the Cx26 gap junction channel provides a unique opportunity for elucidation of the structure of the conductive connexin pore and the molecular determinants of its ion permeation properties (conductance, current-voltage [I-V] relations, and charge selectivity). However, the crystal structure was incomplete, most notably lacking the coordinates of the N-terminal methionine residue, which resides within the pore, and also lacking two cytosolic domains. To allow computational studies for comparison with the known channel properties, we completed the structure. Grand canonical Monte Carlo Brownian dynamics (GCMC/BD) simulations of the completed and the published Cx26 hemichannel crystal structure indicate that the pore is too narrow to permit significant ion flux. The GCMC/BD simulations predict marked inward current rectification and almost perfect anion selectivity, both inconsistent with known channel properties. The completed structure was refined by all-atom molecular dynamics (MD) simulations (220 ns total) in an explicit solvent and POPC membrane system. These MD simulations produced an equilibrated structure with a larger minimal pore diameter, which decreased the height of the permeation barrier formed by the N terminus. GCMC/BD simulations of the MD-equilibrated structure yielded more appropriate single-channel conductance and less anion/cation selectivity. However, the simulations much more closely matched experimentally determined I-V relations when the charge effects of specific co- and posttranslational modifications of Cx26 previously identified by mass spectrometry were incorporated. We conclude that the average equilibrated structure obtained after MD simulations more closely represents the open Cx26 hemichannel structure than does the crystal structure, and that co- and posttranslational modifications of Cx26 hemichannels are likely to play an important physiological role by defining the conductance and ion selectivity of Cx26 channels. Furthermore, the simulations and data suggest that experimentally observed heterogeneity in Cx26 I-V relations can be accounted for by variation in co- and posttranslational modifications.  相似文献   

6.
Resistance to macrolide antibiotics is conferred by mutation of A2058 to G or methylation by Erm methyltransferases of the exocyclic N6 of A2058 (E. coli numbering) that forms the macrolide binding site in the 50S subunit of the ribosome. Ketolides such as telithromycin mitigate A2058G resistance yet remain susceptible to Erm-based resistance. Molecular details associated with macrolide resistance due to the A2058G mutation and methylation at N6 of A2058 by Erm methyltransferases were investigated using empirical force field-based simulations. To address the buried nature of the macrolide binding site, the number of waters within the pocket was allowed to fluctuate via the use of a Grand Canonical Monte Carlo (GCMC) methodology. The GCMC water insertion/deletion steps were alternated with Molecular Dynamics (MD) simulations to allow for relaxation of the entire system. From this GCMC/MD approach information on the interactions between telithromycin and the 50S ribosome was obtained. In the wild-type (WT) ribosome, the 2′-OH to A2058 N1 hydrogen bond samples short distances with a higher probability, while the effectiveness of telithromycin against the A2058G mutation is explained by a rearrangement of the hydrogen bonding pattern of the 2′-OH to 2058 that maintains the overall antibiotic-ribosome interactions. In both the WT and A2058G mutation there is significant flexibility in telithromycin''s imidazole-pyridine side chain (ARM), indicating that entropic effects contribute to the binding affinity. Methylated ribosomes show lower sampling of short 2′-OH to 2058 distances and also demonstrate enhanced G2057-A2058 stacking leading to disrupted A752-U2609 Watson-Crick (WC) interactions as well as hydrogen bonding between telithromycin''s ARM and U2609. This information will be of utility in the rational design of novel macrolide analogs with improved activity against methylated A2058 ribosomes.  相似文献   

7.
Grand canonical Monte Carlo (GCMC) simulations are reported for aqueous solutions containing excess univalent salt (activities a +/- = 1.76-12.3 mM) and one of the following species: an octacationic rod-like ligand, L8+; a B-DNA oligomer with N phosphate charges (8 < or = N < or = 100); or a complex resulting from the binding of L8+ at the center of an N-mer (24 < or = N < or = 250). Simplified models of these multiply charged species are used in the GCMC simulations to predict the fundamental coulombic contributions to the following experimentally relevant properties: 1) the axial distance over which ligand binding affects local counterion concentrations at the surface of the N-mer; 2) the dependence on N of GCMC preferential interaction coefficients, gamma 32MC identical to delta C3/delta C2l a +/-, T, where C3 and C2 are, respectively, the molar concentrations of salt and the multiply charged species (ligand, N-mer or complex); and 3) the dependence on N of SaKobs identical to d in Kobs/d in a +/- = delta (magnitude of ZJ + 2 gamma 32J), where Kobs is the equilibrium concentration quotient for the binding of L8+ to the center of an N-mer and delta denotes the stoichiometric combination of terms, each of which pertains to a reactant or product J having magnitude of ZJ charges. The participation of electrolyte ions in the ligand binding interaction is quantified by the magnitude of SaKobs, which reflects the net (stoichiometrically weighted) difference in the extent of thermodynamic binding of salt ions to the products and reactants. Results obtained here from GCMC simulations yield a picture of the salient molecular consequences of binding a cationic ligand, as well as thermodynamic predictions whose applicability can be tested experimentally. Formation of the central complex is predicted to cause a dramatic reduction in the surface counterion (e.g., Na+) concentration over a region including but extending well beyond the location of the ligand binding site. For binding a cationic ligand, SaKobs is predicted to be negative, indicating net electrolyte ion release in the binding process. At small enough N, -SaKobs is predicted to decrease strongly toward zero with decreasing N. At intermediate N, -SaKobs appears to exceed its limiting value as N-->infinity.  相似文献   

8.
Noskov SY  Im W  Roux B 《Biophysical journal》2004,87(4):2299-2309
Identification of the molecular interaction governing ion conduction through biological pores is one of the most important goals of modern electrophysiology. Grand canonical Monte Carlo Brownian dynamics (GCMC/BD) and three-dimensional Poisson-Nernst-Plank (3d-PNP) electrodiffusion algorithms offer powerful and general approaches to study of ion permeation through wide molecular pores. A detailed analysis of ion flows through the staphylococcal alpha-hemolysin channel based on series of simulations at different concentrations and transmembrane potentials is presented. The position-dependent diffusion coefficient is approximated on the basis of a hydrodynamic model. The channel conductance calculated by GCMC/BD is approximately 10% higher than (electrophysiologically measured) experimental values, whereas results from 3d-PNP are always 30-50% larger. Both methods are able to capture all important electrostatic interactions in equilibrium conditions. The asymmetric conductance upon the polarity of the transmembrane potential observed experimentally is reproduced by GCMC/BD and 3d-PNP. The separation of geometrical and energetic influence of the channel on ion conduction reveals that such asymmetries arise from the permanent charge distribution inside the pore. The major determinant of the asymmetry is unbalanced charge in the triad of polar residues D127, D128, and K131. The GCMC/BD or 3d-PNP calculations reproduce also experimental reversal potentials and permeability rations in asymmetric ionic solutions. The weak anionic selectivity of the channel results from the presence of the salt bridge between E111 and K147 in the constriction zone. The calculations also reproduce the experimentally derived dependence of the reversible potential to the direction of the salt gradient. The origin of such effect arises from the asymmetrical distribution of energetic barriers along the channel axis, which modulates the preferential ion passage in different directions.  相似文献   

9.
A computational algorithm based on Grand Canonical Monte Carlo (GCMC) and Brownian Dynamics (BD) is described to simulate the movement of ions in membrane channels. The proposed algorithm, GCMC/BD, allows the simulation of ion channels with a realistic implementation of boundary conditions of concentration and transmembrane potential. The method is consistent with a statistical mechanical formulation of the equilibrium properties of ion channels (; Biophys. J. 77:139-153). The GCMC/BD algorithm is illustrated with simulations of simple test systems and of the OmpF porin of Escherichia coli. The approach provides a framework for simulating ion permeation in the context of detailed microscopic models.  相似文献   

10.
Collaborative commerce has been used for communication, design, planning, information sharing, and information discovery in business-to-business (B2B) applications. The collaboration between buyers and sellers enhances product quality and customer satisfaction. However, most effort currently focuses on information sharing with customers and suppliers instead of joint product development or manufacturing. Moreover, traditional analytical methods have limited capability in solving problems. This study presents a framework for doing reverse simulation, where designers can reuse past experiments and change system parameters in manufacturing system for collaborative commerce. The framework integrates the object-oriented simulator and the object-oriented database. In this framework, the object-oriented database records the whole experiment scenarios and allows multiple planners with different expertise to involve concurrently and collaboratively. Then, simulations of advanced planning and scheduling in a product manufacturing environment that involves several planners working collaboratively are used for demonstration.  相似文献   

11.
In reacting to global competition and rapidly changing customer demands, industrial business organizations have developed a strong interest in flexible automation. The aim of flexible automation focuses on achieving agility in handling uncertainties from internal or external environments. Modeling complex structures, promoting reuse, and shortening the development time cycle are particularly significant aspects in the analysis and design of CIM systems, where heterogeneous elements have to be integrated in a complex control architecture. The design methodology for FMS control software involves the abstraction of an FMS and the estimation of the system performances. The aim of this activity is to suggest the optimal configuration of an FMS for given specifications, through simulation tools. In the software engineering field, object-oriented (OO) approaches have proven to be a powerful technique with respect to such aspects. The unified modeling language (UML), by using OO design methodologies, can offer reusability, extendibility, and modifiability in software design. Also, it bridges the gap that exists between the OO analysis and design area and the area of OO programming by creating an integrative metamodel of OO concepts. The specific goal of this paper is to formulate a new methodology for developing reusable, extendible, and modifiable control software for an FMS in an object-oriented environment. It is demonstrated that, with few diagrams, UML can be used to model such systems without being associated with other modeling tools.  相似文献   

12.
The VPH/Physiome Project is developing the model encoding standards CellML (cellml.org) and FieldML (fieldml.org) as well as web-accessible model repositories based on these standards (models.physiome.org). Freely available open source computational modelling software is also being developed to solve the partial differential equations described by the models and to visualise results. The OpenCMISS code (opencmiss.org), described here, has been developed by the authors over the last six years to replace the CMISS code that has supported a number of organ system Physiome projects.OpenCMISS is designed to encompass multiple sets of physical equations and to link subcellular and tissue-level biophysical processes into organ-level processes. In the Heart Physiome project, for example, the large deformation mechanics of the myocardial wall need to be coupled to both ventricular flow and embedded coronary flow, and the reaction-diffusion equations that govern the propagation of electrical waves through myocardial tissue need to be coupled with equations that describe the ion channel currents that flow through the cardiac cell membranes.In this paper we discuss the design principles and distributed memory architecture behind the OpenCMISS code. We also discuss the design of the interfaces that link the sets of physical equations across common boundaries (such as fluid-structure coupling), or between spatial fields over the same domain (such as coupled electromechanics), and the concepts behind CellML and FieldML that are embodied in the OpenCMISS data structures. We show how all of these provide a flexible infrastructure for combining models developed across the VPH/Physiome community.  相似文献   

13.
Pang YP 《Proteins》2004,57(4):747-757
Severe acute respiratory syndrome (SARS) is a contagious and deadly disease caused by a new coronavirus. The protein sequence of the chymotrypsin-like cysteine proteinase (CCP) responsible for SARS viral replication has been identified as a target for developing anti-SARS drugs. Here, I report the ATVRLQ(p1)A(p1')-bound CCP 3D model predicted by 420 different molecular dynamics simulations (2.0 ns for each simulation with a 1.0-fs time step). This theoretical model was released at the Protein Data Bank (PDB; code: 1P76) before the release of the first X-ray structure of CCP (PDB code: 1Q2W). In contrast to the catalytic dyad observed in X-ray structures of CCP and other coronavirus cysteine proteinases, a catalytic triad comprising Asp187, His41, and Cys145 is found in the theoretical model of the substrate-bound CCP. The simulations of the CCP complex suggest that substrate binding leads to the displacement of a water molecule entrapped by Asp187 and His41, thus converting the dyad to a more efficient catalytic triad. The CCP complex structure has an expanded active-site pocket that is useful for anti-SARS drug design. In addition, this work demonstrates that multiple molecular dynamics simulations are effective in correcting errors that result from low-sequence-identity homology modeling.  相似文献   

14.
面向对象程序设计(OOP)技术在生态系统模型中的应用   总被引:1,自引:0,他引:1  
面向对象程序设计(OOP)技术在生态系统模型中的应用刘茂松(南京林业大学森林资源与环境学院,210037)ApplicationofObject-OrientedProgrammingTechniquesinEcosystemModelling.¥L...  相似文献   

15.
Peptidic nanodiscs are useful membrane mimetic tools for structural and functional studies of membrane proteins, and membrane interacting peptides including amyloids. Here, we demonstrate anti-amyloidogenic activities of a nanodisc-forming 18-residue peptide (denoted as 4F), both in lipid-bound and lipid-free states by using Alzheimer's amyloid-beta (Aβ40) peptide as an example. Fluorescence-based amyloid fibrillation kinetic assays showed a significant delay in Aβ40 amyloid aggregation by the 4F peptide. In addition, 4F-encased lipid nanodiscs, at an optimal concentration of 4F (>20?μM) and nanodisc size (<10?nm), significantly affect amyloid fibrillation. A comparison of experimental results obtained from nanodiscs with that obtained from liposomes revealed a substantial inhibitory efficacy of 4F-lipid nanodiscs against Aβ40 aggregation and were also found to be suitable to trap Aβ40 intermediates. A combination of atomistic molecular dynamics simulations with NMR and circular dichroism experimental results exhibited a substantial change in Aβ40 conformation upon 4F binding through electrostatic and π–π interactions. Specifically, the 4F peptide was found to interfere with the central β-sheet-forming residues of Aβ40 through substantial hydrogen, π–π, and π–alkyl interactions. Fluorescence experiments and coarse-grained molecular dynamics simulations showed the formation of a ternary complex, where Aβ40 binds to the proximity of peptidic belt and membrane surface that deaccelerate amyloid fibrillation. Electron microscopy images revealed short and thick amyloid fibers of Aβ40 formed in the presence of 4F or 4F-lipid nanodsics. These findings could aid in the development of amyloid inhibitors as well as in stabilizing Aβ40 intermediates for high-resolution structural and neurobiological studies.  相似文献   

16.
MOTIVATION: The efficiency of bioinformatics programmers can be greatly increased through the provision of ready-made software components that can be rapidly combined, with additional bespoke components where necessary, to create finished programs. The new standard for C++ includes an efficient and easy to use library of generic algorithms and data-structures, designed to facilitate low-level component programming. The extension of this library to include functionality that is specifically useful in compute-intensive tasks in bioinformatics and molecular modelling could provide an effective standard for the design of reusable software components within the biocomputing community. RESULTS: A novel application of generic programming techniques in the form of a library of C++ components called the Bioinformatics Template Library (BTL) is presented. This library will facilitate the rapid development of efficient programs by providing efficient code for many algorithms and data-structures that are commonly used in biocomputing, in a generic form that allows them to be flexibly combined with application specific object-oriented class libraries. AVAILABILITY: The BTL is available free of charge from our web site http://www.cryst.bbk.ac.uk/~classlib/ and the EMBL file server http://www.embl-ebi.ac.uk/FTP/index.html  相似文献   

17.
The incorporation of radiolabeled lipid precursors into triacylglycerol (TG) molecular species in Mortierella ramanniana var. angulispora, an oleaginous fungus, was studied to determine the biosynthetic pathways for TG molecular species. Radiolabeled TG molecular species were separated and quantified by reverse-phase high performance liquid chromatography with a radioisotope detector. The major TG molecular species labeled by [1-(14)C]oleic acid at 30 degrees C were OOP, OOO, and OPP (TG molecular species designations represent three constituent acyl groups. G, gamma-linolenic acid; L, linoleic acid; O, oleic acid; S, stearic acid; P, palmitic acid), which were abundant TG molecular species in this fungus. The incorporation of [1-(14)C]oleic acid at 15 degrees C into these molecular species was the same, while that into most other species was decreased, suggesting that biosynthesis of major molecular species such as OOP, OOO, and OPP differs from that of other TG molecular species. [1-(14)C]Linoleic acid incorporation indicated that the major labeled molecular species were LOP and LOO, which may be due to acylation of oleoyl, palmitoyl-glycerol, or dioleoyl-glycerol by exogenous linoleic acid. This is basically the same mechanism as for OOP and OOO biosynthesis from exogenous oleic acid. [(14)C(U)]Glycerol incorporation suggested that TG molecular species containing palmitic acid such as OPP were more readily synthesized through the de novo pathway. Further experiments involving inhibitors such as sodium azide and cerulenin suggested that OOO biosynthesis included a mechanism differing from that in the cases of OOP and OPP. Trifluoperazine, which inhibits the conversion from phosphatidic acid to TG, decreased [1-(14)C]oleic acid incorporation into all molecular species, suggesting that the incorporation into all molecular species included the de novo TG biosynthetic pathway via phosphatidic acid. These results revealed that the biosynthetic pathways for TG molecular species can be classified into several groups, which exhibit different sensitivities to low temperature and inhibitors of lipid metabolism. This implies that the composition of TG molecular species is regulated through different biosynthetic pathways responsible for specific TG molecular species, providing a new insight into the biosynthesis of TG molecular species.  相似文献   

18.
The universally valid genetic code is the final result of a multi-stage course of development. Degeneracy, as an important property of the genetic code, was possibly not yet present in the earliest code, first appearing at a later stage of development (Code III). Possibly this step in development is coupled with the presence of a total of four amino acid groups (L, I, E, F). Each group contains a specific number of amino acid (AL, AI, AE, AF). Amino acid groups: - (L) hydrophobic - (I) weakly hydrophobic or polar but uncharged - (E) hydrophilic, acidic - (F) hydrophilic, basic - (D) hydrophobic, aromatic (only in Code IV and Code M. This group is not considered in the calculations below.) In a subsequent stage of development the number of amino acids increases further. At the same time the code becomes more degenerate. The universal genetic code is characterized by three constants of being degenerate. Its immediate predecessor has linear degeneration with two constants. The mitochondrial code represents a transitional form between these two codes.  相似文献   

19.
Abstract

Excluded volume map sampling (EVMS) is a particularly efficient means of performing test molecule sampling to estimate or impose chemical potential in molecular simulations. This paper discusses the motivation and applications of excluded volume map sampling, presents computer code demonstrating its implementation, and gives an example of its application.  相似文献   

20.
Conventional molecular simulation techniques such as grand canonical Monte Carlo (GCMC) strictly rely on purely random search inside the simulation box for predicting the adsorption isotherms. This blind search is usually extremely time demanding for providing a faithful approximation of the real isotherm and in some cases may lead to non-optimal solutions. A novel approach is presented in this article which does not use any of the classical steps of the standard GCMC method, such as displacement, insertation, and removal. The new approach is based on the well-known genetic algorithm to find the optimal configuration for adsorption of any adsorbate on a structured adsorbent under prevailing pressure and temperature. The proposed approach considers the molecular simulation problem as a global optimization challenge. A detailed flow chart of our so-called genetic algorithm molecular simulation (GAMS) method is presented, which is entirely different from traditions molecular simulation approaches. Three real case studies (for adsorption of CO2 and H2 over various zeolites) are borrowed from literature to clearly illustrate the superior performances of the proposed method over the standard GCMC technique. For the present method, the average absolute values of percentage errors are around 11% (RHO-H2), 5% (CHA-CO2), and 16% (BEA-CO2), while they were about 70%, 15%, and 40% for the standard GCMC technique, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号