首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mussel adhesive proteins (MAPs) have been considered as potential underwater and medical bioadhesives. Previously, we reported a functional expression of recombinant MAP hybrid fp-151, which is a fusion protein with six type 1 (fp-1) decapeptide repeats at each type 5 (fp-5) terminus, with practical properties in Escherichia coli. In the present work, we introduced the Vitreoscilla hemoglobin (VHb) co-expression strategy to enhance the production levels of hybrid fp-151 since VHb has been successfully used for efficient oxygen utilization in several expression systems, including E. coli. In both batch-type flask and fed-batch-type bioreactor cultures, we found that co-expression of VHb conferred higher cell growth and hybrid fp-151 production. Its positive effects were significantly increased in high cell density bioreactor cultures as the microaerobic environment was more quickly and severely formed. We obtained a approximately 1.9-fold higher (approximately 1 g/L) production of MAP fp-151 from VHb co-expressing cells in fed-batch bioreactor cultures as compared to that from VHb non-expressing cells. Collectively and regardless of the culture type, VHb co-expression strategy was successful in enhancing the production of recombinant mussel adhesive proteins in the E. coli expression system.  相似文献   

2.
Mussel adhesive proteins (MAPs) have been suggested as promising bioadhesives for diverse application fields, including medical uses. Previously, we successfully constructed and produced a new type of functional recombinant MAP, fp-151, in a prokaryotic Escherichia coli expression system. Even though the E. coli-derived MAP showed several excellent features, such as high production yield and efficient purification, in vitro enzymatic modification is required to convert tyrosine residues to l-3,4-dihydroxyphenyl alanine (dopa) molecules for its adhesive ability, due to the intrinsic inability of E. coli to undergo post-translational modification. In this work, we produced a soluble recombinant MAP in insect Sf9 cells, which are widely used as an effective and convenient eukaryotic expression system for eukaryotic foreign proteins. Importantly, we found that insect-derived MAP contained converted dopa residues by in vivo post-translational modification. In addition, insect-derived MAP also had other post-translational modifications including phosphorylation of serine and hydroxylation of proline that originally occurred in some natural MAPs. To our knowledge, this is the first report on in vivo post-translational modifications of MAP containing dopa and other modified amino acid residues.  相似文献   

3.
Efficient target gene delivery into eukaryotic cells is important for biotechnological research and gene therapy. Gene delivery based on proteins, including histones, has recently emerged as a powerful non-viral DNA transfer technique. Here, we investigated the potential use of a recombinant mussel adhesive protein, hybrid fp-151, as a gene delivery material, in view of its similar basic amino acid composition to histone proteins, and cost-effective and high-level production in Escherichia coli. After confirming DNA binding affinity, we transfected mammalian cells (human 293T and mouse NIH/3T3) with foreign genes using hybrid fp-151 as the gene delivery carrier. Hybrid fp-151 displayed comparable transfection efficiency in both mammalian cell lines, compared to the widely used transfection agent, Lipofectamine 2000. Our results indicate that this mussel adhesive protein may be used as a potential protein-based gene-transfer mediator.  相似文献   

4.
Mussel adhesive proteins, including the 20-plus variants of foot protein type 3 (fp-3), have been suggested as potential environmentally friendly adhesives for use in aqueous conditions and in medicine. Here we report the novel production of a recombinant Mytilus galloprovincialis foot protein type 3 variant A (Mgfp-3A) fused with a hexahistidine affinity ligand in Escherichia coli and its approximately 99% purification with affinity chromatography. Recombinant Mgfp-3A showed a superior purification yield and better apparent solubility in 5% acetic acid (prerequisites for large-scale production and practical use) compared to those of the previously reported recombinant M. galloprovincialis foot protein type 5 (Mgfp-5). The adsorption abilities and adhesion forces of purified recombinant Mgfp-3A were compared with those of Cell-Tak (a commercial mussel extract adhesive) and recombinant Mgfp-5 using quartz crystal microbalance analysis and modified atomic force microscopy, respectively. These assays showed that the adhesive ability of recombinant Mgfp-3A was comparable to that of Cell-Tak but lower than that of recombinant Mgfp-5. Collectively, these results indicate that recombinant Mgfp-3A may be useful as a commercial bioadhesive or an adhesive ingredient in medical or underwater environments.  相似文献   

5.
Mussel adhesive proteins (MAPs) have great potential as bioglues, particularly in wet conditions. Although in vivo residue-specific incorporation of 3,4-dihydroxyphenylalanine (Dopa) in tyrosine-auxotrophic Escherichia coli cells allows for production of Dopa-incorporated bioengineered MAPs (dMAPs), the low production yield hinders the practical application of dMAPs. This low production yield of dMAPs is due to low translational activity of a noncanonical amino acid, Dopa, in E. coli cells. Herein, to enhance the production yield of dMAPs, we investigated the coexpression of Dopa-recognizing tyrosyl-tRNA synthetases (TyrRSs). To use the Dopa-specific Methanococcus jannaschii TyrRS (MjTyrRS-Dopa), we altered the anticodon of tyrosyl-tRNA amber suppressor into AUA (MjtRNATyrAUA) to recognize a tyrosine codon (AUA). Co-overexpression of MjTyrRS-Dopa and MjtRNATyrAUA increased the production yield of Dopa-incorporated MAP foot protein type 3 (dfp-3) by 57%. Similarly, overexpression of E. coli TyrRS (EcTyrRS) led to a 72% higher production yield of dfp-3. Even with coexpression of Dopa-recognizing TyrRSs, dfp-3 has a high Dopa incorporation yield (over 90%) compared to ones prepared without TyrRS coexpression.  相似文献   

6.
Mussel adhesive proteins have been suggested as a basis for environmentally friendly adhesives for use in aqueous conditions and in medicine. However, attempts to produce functional and economical recombinant mussel adhesive proteins (mainly foot protein type 1) in several systems have failed. Here, the cDNA coding for Mytilus galloprovincialis foot protein type 5 (Mgfp-5) was isolated for the first time. Using this cDNA, we produced a recombinant Mgfp-5 fused with a hexahistidine affinity ligand, which was expressed in a soluble form in Escherichia coli and was highly purified using affinity chromatography. The adhesive properties of purified recombinant Mgfp-5 were compared with the commercial extracted mussel adhesive Cell-Tak by investigating adhesion force using atomic force microscopy, material surface coating, and quartz crystal microbalance. Even though further macroscale assays are needed, these microscale assays showed that recombinant Mgfp-5 has significant adhesive ability and may be useful as a bioadhesive in medical or underwater environments.  相似文献   

7.
Mussel adhesive proteins have been suggested as a basis for environmentally friendly adhesives for use in aqueous conditions and in medicine. However, attempts to produce functional and economical recombinant mussel adhesive proteins (mainly foot protein type 1) in several systems have failed. Here, the cDNA coding for Mytilus galloprovincialis foot protein type 5 (Mgfp-5) was isolated for the first time. Using this cDNA, we produced a recombinant Mgfp-5 fused with a hexahistidine affinity ligand, which was expressed in a soluble form in Escherichia coli and was highly purified using affinity chromatography. The adhesive properties of purified recombinant Mgfp-5 were compared with the commercial extracted mussel adhesive Cell-Tak by investigating adhesion force using atomic force microscopy, material surface coating, and quartz crystal microbalance. Even though further macroscale assays are needed, these microscale assays showed that recombinant Mgfp-5 has significant adhesive ability and may be useful as a bioadhesive in medical or underwater environments.  相似文献   

8.
Mussels have a remarkable ability to attach their holdfast, or byssus, opportunistically to a variety of substrata that are wet, saline, corroded, and/or fouled by biofilms. Mytilus edulis foot protein-5 (Mefp-5) is one of several proteins in the byssal adhesive plaque of the mussel M. edulis. The high content of 3,4-dihydroxyphenylalanine (Dopa) (~30 mol %) and its localization near the plaque-substrate interface have often prompted speculation that Mefp-5 plays a key role in adhesion. Using the surface forces apparatus, we show that on mica surfaces Mefp-5 achieves an adhesion energy approaching E(ad) = ~-14 mJ/m(2). This exceeds the adhesion energy of another interfacial protein, Mefp-3, by a factor of 4-5 and is greater than the adhesion between highly oriented monolayers of biotin and streptavidin. The adhesion to mica is notable for its dependence on Dopa, which is most stable under reducing conditions and acidic pH. Mefp-5 also exhibits strong protein-protein interactions with itself as well as with Mefp-3 from M. edulis.  相似文献   

9.
: The complementary DNA encoding the byssal plaque matrix protein (fp-2) of the mussel Mytilus coruscus was isolated. The predicted amino acid sequence (474 amino acids) consists of four parts: the signal peptide, the amino-terminal nonrepetitive domain, the central repetitive domain containing 11 repeats of an epidermal growth factor–like motif, and the carboxy-terminal nonrepetitive domain. The amino acid sequence is 82.7%, similar to that of fp-2 of Mytilus galloprovincialis, and the basic structure including number and motif of repeats is highly conservative. Amino acid substitutions are less frequent in ``consensus positions' of the central repetitive domain (13.1%), and most of them are changes from irregular amino acids to regular ones. Thus, the structure of fp-2 was found to be conservative between species. It was presumed that the basic structure of fp-2 is unchangeable to maintain the flexible and durable matrix structure and that variation is not required because fp-2 is protected by other surface proteins.  相似文献   

10.
Rotaviruses are one of the worldwide leading causes of gastroenteritis in children under 5 yr old. The rotavirus nonstructural NSP5 is a phosphoprotein implicated in viroplasms formation, whereas NSP6 could have a possible regulatory role of NSP5. It has been reported that N- and C-termini of NSP5 are important for amount of protein is required for structural analysis, efficient expression systems are required. His-tag fusion at the C-terminus and glutathione-S-transferase (GST)-fusion at the N-terminus were used as expression systems, and conditions for recombinant proteins expression were obtained. His-tag fusion was not efficient to produce NSP5 (2% of total protein), but NSP6 was expressed in higher amounts (11% of total protein). In contrast, GST-NSP5 and GST-NSP6 proteins correspond to 34 and 31% of the total proteins, respectively. GST-fusions seem to have a protective effect against nonstructural rotavirus protein toxicity in Escherichia coli; however, in both systems, NSP5 and NSP6 recombinant proteins were expressed as inclusion bodies. Conditions for solubilization and purification of recombinant proteins were achieved. This is the first report of expression and purification of NSP5 and NSP6 recombinant proteins in suitable amounts for further structural analysis.  相似文献   

11.
Zhao H  Waite JH 《Biochemistry》2005,44(48):15915-15923
The protein family known as fp-1 provides mussel byssus with a protective outer coating and has drawn much attention for its water resistant bioadhesive properties in vitro. A new fp-l isolated from the green shell mussel Perna canaliculus (pcfp-1) reveals a composition dominated by only four amino acids: 3,4-dihydroxyphenyl-L-alanine (dopa), lysine, proline, and valine at approximately 20 mol % each. SDS-PAGE and MALDI-TOF mass spectrometry detected size variants at 48 and 52 kDa in preparations of purified Pcfp-1. The N-terminal sequence enabled construction of oligonucleotide primers for PCR and RACE-derived cDNAs from which the complete sequence of four variants was deduced. pcfp-1 deviates from all known homologues in other mussels in several notable respects: its mass is half, most of its sequence is represented by 75 tandem repeats of a tetrapeptide, i.e., PY*VK, in which Y* is dopa, prolines are not hydroxylated, and thiolate cysteines are clustered in homologous sequences at both the amino and carboxy termini. Amino acids in the repeat sequence show a striking resemblance to proline-rich cell wall proteins with tandemly repeated PPVYK pentapeptides [Hong, J. C., Nagao, R. T., and Key, J. L. (1987) J. Biol. Chem. 262, 8367-8376]. Cysteine plays a key role in cross-linking pcfp-1 by forming adducts with dopaquinone. Significant 5-S-cysteinyldopa and smaller amounts of 2-S-cysteinyldopa were detected in hydrolysates of the byssal threads of P. canaliculus. The cross-links could also be formed by oxidation of pcfp-1 in vitro using mushroom tyrosinase. Cysteinyldopa cross-links were present in trace amounts only in the byssus of other mussel species.  相似文献   

12.
The microtubule-associated protein 1B (MAP1B) locus has been mapped in close proximity to spinal muscular atrophy (SMA) on chromosome 5q13. We have identified a second microsatellite within a MAP1B intron, which increases the heterozygosity of this locus to 94%. Two unambiguous recombination events establish MAP1B as a closely linked, distal flanking marker for the disease locus, while a third recombinant establishes D5S6 as the proximal flanking marker. The combination of key recombinants and linkage analysis place the SMA gene in an approximately 2-cM interval between loci D5S6 and MAP1B. Physical mapping and cloning locate MAP1B within 250 kb of locus D5S112. The identification and characterization of a highly polymorphic gene locus tightly linked to SMA will facilitate isolation of the disease gene, evaluation of heterogeneity, and development of a prenatal test for SMA.  相似文献   

13.
The essential mitogen-activated protein kinase (MAP kinase), LmxMPK4, of Leishmania mexicana is minimally active when purified following recombinant expression in Escherichia coli and was therefore unsuitable for drug screening until now. Using an E. coli protein co-expression system we identified LmxMKK5, a STE7-like protein kinase from L. mexicana, which phosphorylates and activates recombinant LmxMPK4 in vitro. LmxMKK5 is comprised of 525 amino acids and has a calculated molecular mass of 55.9 kDa. The co-expressed, purified LmxMPK4 showed strong phosphotransferase activity in radiometric kinase assays and was confirmed by immunoblot and tandem mass spectrometry analyses to be phosphorylated on threonine 190 and tyrosine 192 of the typical TXY MAP kinase activation motif. The universal protein kinase inhibitor staurosporine reduced the phosphotransferase activity of co-expressed and activated LmxMPK4 in a dose-dependent manner. To our knowledge this is the first time that an in vitro activator of an essential Leishmania MAP kinase was identified and our findings form the basis for the development of drug screening assays to identify small molecule inhibitors of LmxMPK4 in the search for new therapeutic drugs against leishmaniasis.  相似文献   

14.
Insulin-like peptide 5 (INSL5) is a recently identified insulin superfamily member. Although it binds to and activates the G-protein coupled receptor, RXFP4, its precise biological function remains unknown. To help determine its function, significant quantities of INSL5 are required. In the present work, three single-chain INSL5 precursors were designed, two of which were successfully expressed in E. coli cells. The expressed precursors were solubilized from inclusion bodies, purified almost to homogeneity by immobilized metal-ion affinity chromatography, and then refolded in vitro. One precursor could be converted to two-chain human INSL5 bearing an extended N-terminus of the A-chain (designated long-INSL5) by sequential Lys-C endoproteinase and carboxypeptidase B treatment. The 6 residue A-chain N-terminal extension of long-INSL5 was subsequently removed by Aeromonas aminopeptidase to yield native INSL5 that was designated short-INSL5. Circular dichroism spectroscopic analysis and peptide mapping showed that the recombinant INSL5s adopted an insulin-like conformation and possessed the expected characteristic insulin-like disulfide linkages. Activity assay showed that both long- and short-INSL5 had full RXFP4 receptor activity compared with chemically synthesized human INSL5. This suggested that extension of the N-terminus of the A-chain of long-INSL5 did not adversely impact upon the binding to or activation of the RXFP4 receptor. However, the single-chain INSL5 precursor was inactive which indicated that a free C-terminus of the B-chain is critical for the activity of INSL5. Our present work thus provides an efficient approach for preparation of INSL5 and its analogs through recombinant expression in E. coli cells.  相似文献   

15.
The mechanical actions of the fungus Magnaporthe grisea raise many intriguing questions concerning the forces involved. These include: (1) the material properties of the appressorial wall; (2) the strength of the adhesive that keeps the appressorium anchored to the rice leaf surface; and (3) the forces involved in the penetration process whereby a peg is driven through the host cell wall. In this paper we give order of magnitude estimates for all three of these quantities. A simple Young-Laplace law type argument is used to show that the appressorial wall elastic modulus is of order 10–100 MPa; and an adaptation of standard adhesion theory indicates a lower bound on the strength of the appressorial adhesive to be of the order 500 J/m2. Drawing on ideas from plasticity theory and ballistics, estimates of the penetration force raise interesting questions about experiments performed on the penetration of inert substrates by the fungus.  相似文献   

16.
Using the atomic force microscope, we have investigated the nanoscale mechanical response of the attachment adhesive of the terrestrial alga Prasiola linearis (Prasiolales, Chlorophyta). We were able to locate and extend highly ordered mechanical structures directly from the natural adhesive matrix of the living plant. The in vivo mechanical response of the structured biopolymer often displayed the repetitive sawtooth force-extension characteristics of a material exhibiting high mechanical strength at the molecular level. Mechanical and histological evidence leads us to propose a mechanism for mechanical strength in our sample based on amyloid fibrils. These proteinaceous, pleated β-sheet complexes are usually associated with neurodegenerative diseases. However, we now conclude that the amyloid protein quaternary structures detected in our material should be considered as a possible generic mechanism for mechanical strength in natural adhesives.  相似文献   

17.
Mytilus galloprovincialis foot protein type-5 (Mgfp-5) is one of the mussel adhesive proteins that participate in adhesion with the substratum. We previously reported the production of recombinant Mgfp-5 in Escherichia coli and showed that the recombinant protein had superior adhesion abilities versus those of Cell-Tak, a commercially available mussel adhesive protein mixture. In the present work, we investigated the feasibility of using recombinant Mgfp-5 as a cell adhesion agent. Purified and tyrosinase-modified recombinant Mgfp-5 was used to adhere living anchorage-independent cells such as insect Drosophila S2 cells and human MOLT-4 cells onto glass slides. Our results revealed that these cell lines efficiently attached to recombinant Mgfp-5-coated glass surfaces, and that surface-immobilized S2 cells were viable and able to undergo cell division for up to 1 week. Cytochemical studies with 4',6-diamidino-2-phenylindole (DAPI) staining of nuclei and immunofluorescence for secreted foreign human erythropoietin (hEPO) from recombinant S2 cells and quantitative comparative analyses of S2 cell binding ability with Cell-Tak and poly-L-lysine, the main cell adhesion agent, were performed to demonstrate successful usage of recombinant Mgfp-5 for cell biological applications. Collectively, these results indicate that recombinant Mgfp-5 may be a useful new cell adhesion biomaterial for anchorage-independent cells.  相似文献   

18.
Foot tissue of the green mussel Perna viridis contains a variety of byssal precursor proteins with the unusual redox-active amino acid, Dopa (L-β-3,4-dihydroxyphenyl-α-alanine). Eight proteins were detectable in acidic extracts of the Perna foot by a redox cycling assay with nitroblue tetrazolium. In one of these, however, P. viridis foot protein-1 (Pvfp-1), activity was not due to Dopa, but to another redox-active derivative. Based on specific colorimetric derivatization with Arnow's reagent, ninhydrin and phenylisothiocyanate (Edman), mass spectrometry, the redox-active derivative in Pvfp-1 is not consistent with any known modification. Another uncommon modification of Pvfp-1 involves O-glycosylation of threonine by mannose, glucose or fucose. As in previously characterized fp-1s, the primary sequence of the Pvfp-1 (apparent mass 89?kDa) has two consensus decapeptide motifs; one is APPKPX1TAX2K and the other is APPPAX1TAX2K, where P is Pro/Hyp, and X1 and X2 are difucosylated threonine and a redox sensitive derivative of tyrosine or Dopa, respectively. Of these two unusual residues, X2 is unique to Pvfp-1, whereas O-glycosylated Thr has been previously detected in freshwater mussel fp-1. The sequence homology of Pvfp-1 with the common structural motifs of the fp-1 protein family strongly suggests that the Pvfp-1 functions as the byssal coating (lacquer) protein.  相似文献   

19.
The attachment complex of brachiolaria larvae of the asteroid Asterias rubens comprises three brachiolar arms and an adhesive disc located on the preoral lobe. The former are used in temporary attachment and sensory testing of the substratum, whereas the latter is used for permanent fixation to the substratum at the onset of metamorphosis. Brachiolar arms are hollow structures consisting of an extensible stem tipped by a crown of dome-like ciliated papillae. The papilla epidermis is composed of secretory cells (type A, B and C cells), non-secretory ciliated cells, neurosecretory-like cells and support cells. Type A and B secretory cells fill a large part of the papilla epidermis and are always closely associated. They presumably form a duo-gland adhesive system in which type A and B cells are respectively adhesive and de-adhesive in function. The adhesive disc is an epidermal structure mainly composed of secretory cells and support cells. Secretory cells produce the cement, which anchor the metamorphic larva to the substratum until the podia are developed. The relatedness between the composition of the adhesive material in the brachiolaria attachment complex and in the podia of adults was investigated by immunocytochemistry using antibodies raised against podial adhesive secretions of A. rubens. Type A secretory cells were the only immunolabelled cells indicating that their temporary adhesive shares common epitopes with the one of podia. The attachment pattern displayed by the individuals of A. rubens during the perimetamorphic period—temporary, permanent, temporary—is unique among marine non-vertebrate Metazoa.  相似文献   

20.
Seth Tyler 《Acta zoologica》1973,54(2):139-151
A modified cilium with an adhesive function has been found in an interstitial marine turbellarian Paratomella rubra (Acoela). This newly discovered cilium-type is referred to as a haptocilium; it differs structurally from usual locomotory cilia only in the morphology of the tip. Inside the haptocilial tip is a lamellate, electron-dense core, and visible outside the ciliary membrane of the tip is an amorphous secretion which is presumably the actual adhesive material by which the haptocilia are able to attach to surfaces. Haptocilia occupy a restricted area, a ventral tail plate, in Paratomella. They are motile and display a characteristic slow, irregular beat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号