首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ciliate assemblages are often overlooked, but ubiquitous components of microbial biofilms which require a better understanding. Ciliate, diatom and bacterial colonisation were evaluated on two fouling-release (FR) coatings, viz. Intersleek 970 and Hempasil X3, and two biocidal antifouling (AF) coatings, viz. Intersmooth 360 and Interspeed 5640, in Port Phillip Bay, Australia. A total of 15 genera were identified during the 10 week deployment. Intersleek 970 displayed the most rapid fouling by ciliates, reaching 63.3(± 5.9) cells cm?2. After 10 weeks, all four coatings were extensively fouled. However, the toxicity of the AF coatings still significantly inhibited microbial fouling compared to the FR coatings. On all treatments, colonies of sessile peritrichs dominated the ciliate assemblage in the early stage of succession, but as the biofilm matured, vagile ciliates exerted more influence on the assemblage structure. The AF coatings showed selective toxic effects, causing significant differences in the ciliate species assemblages among the treatments.  相似文献   

2.
The antimicrobial performance of two fouling-release coating systems, Intersleek 700® (IS700; silicone technology), Intersleek 900® (IS900; fluoropolymer technology) and a tie coat (TC, control surface) was investigated in a short term (10 days) field experiment conducted at a depth of ca 0.5 m in the Marina Bandar Rawdha (Muscat, Oman). Microfouling on coated glass slides was analyzed using epifluorescence microscopy and adenosine-5′-triphosphate (ATP) luminometry. All the coatings developed biofilms composed of heterotrophic bacteria, cyanobacteria, seven species of diatoms (2 species of Navicula, Cylindrotheca sp., Nitzschia sp., Amphora sp., Diploneis sp., and Bacillaria sp.) and algal spores (Ulva sp.). IS900 had significantly thinner biofilms with fewer diatom species, no algal spores and the least number of bacteria in comparison with IS700 and the TC. The ATP readings did not correspond to the numbers of bacteria and diatoms in the biofilms. The density of diatoms was negatively correlated with the density of the bacteria in biofilms on the IS900 coating, and, conversely, diatom density was positively correlated in biofilms on the TC. The higher antifouling efficacy of IS900 over IS700 may lead to lower roughness and thus lower fuel consumption for those vessels that utilise the IS900 fouling-release coating.  相似文献   

3.
The ideal marine antifouling (AF)/fouling-release (FR) coating should be non-toxic, while effectively either resisting the attachment of marine organisms (AF) or significantly reducing their strength of attachment (FR). Many recent studies have shown that amphiphilic polymeric materials provide a promising solution to producing such coatings due to their surface dual functionality. In this work, poly(ethylene glycol) (PEG) of different molecular weights (Mw?=?350, 550) was coupled to a saturated difunctional alkyl alcohol to generate amphiphilic surfactants (PEG-hydrocarbon-OH). The resulting macromolecules were then used as side chains to covalently modify a pre-synthesized PS8?K-b-P(E/B)25?K-b-PI10?K (SEBI or K3) triblock copolymer, and the final polymers were applied to glass substrata through an established multilayer surface coating technique to prepare fouling resistant coatings. The coated surfaces were characterized with AFM, XPS and NEXAFS, and evaluated in laboratory assays with two important fouling algae, Ulva linza (a green macroalga) and Navicula incerta, a biofilm-forming diatom. The results suggest that these polymer-coated surfaces undergo surface reconstruction upon changing the contact medium (polymer/air vs polymer/water), due to the preferential interfacial aggregation of the PEG segment on the surface in water. The amphiphilic polymer-coated surfaces showed promising results as both AF and FR coatings. The sample with longer PEG chain lengths (Mw?=?550?g?mol?1) exhibited excellent properties against both algae, highlighting the importance of the chemical structures on ultimate biological performance. Besides reporting synthesis and characterization of this new type of amphiphilic surface material, this work also provides insight into the nature of PEG/hydrocarbon amphiphilic coatings, and this understanding may help in the design of future generations of fluorine-free, environmentally friendly AF/FR polymeric coatings.  相似文献   

4.
Species of filamentous brown algae in the family Ectocarpaceae are significant members of fouling communities. However, there are few systematic studies on the influence of surface physico-chemical properties on their adhesion. In the present paper the development of a novel, laboratory-based adhesion bioassay for ectocarpoid algae, at an appropriate scale for the screening of sets of experimental samples in well-replicated and controlled experiments is described. The assays are based on the colonization of surfaces from a starting inoculum consisting of multicellular filaments obtained by blending the cultured alga Ectocarpus crouaniorum. The adhesion strength of the biomass after 14 days growth was assessed by applying a hydrodynamic shear stress. Results from adhesion tests on a set of standard surfaces showed that E. crouaniorum adhered more weakly to the amphiphilic Intersleek? 900 than to the more hydrophobic Intersleek? 700 and Silastic? T2 coatings. Adhesion to hydrophilic glass was also weak. Similar results were obtained for other cultivated species of Ectocarpus but differed from those obtained with the related ectocarpoid species Hincksia secunda. The response of the ectocarpoid algae to the surfaces was also compared to that for the green alga, Ulva.  相似文献   

5.
The antimicrobial performance of two fouling-release coating systems, Intersleek 700? (IS700; silicone technology), Intersleek 900? (IS900; fluoropolymer technology) and a tie coat (TC, control surface) was investigated in a short term (10 days) field experiment conducted at a depth of ca 0.5 m in the Marina Bandar Rawdha (Muscat, Oman). Microfouling on coated glass slides was analyzed using epifluorescence microscopy and adenosine-5'-triphosphate (ATP) luminometry. All the coatings developed biofilms composed of heterotrophic bacteria, cyanobacteria, seven species of diatoms (2 species of Navicula, Cylindrotheca sp., Nitzschia sp., Amphora sp., Diploneis sp., and Bacillaria sp.) and algal spores (Ulva sp.). IS900 had significantly thinner biofilms with fewer diatom species, no algal spores and the least number of bacteria in comparison with IS700 and the TC. The ATP readings did not correspond to the numbers of bacteria and diatoms in the biofilms. The density of diatoms was negatively correlated with the density of the bacteria in biofilms on the IS900 coating, and, conversely, diatom density was positively correlated in biofilms on the TC. The higher antifouling efficacy of IS900 over IS700 may lead to lower roughness and thus lower fuel consumption for those vessels that utilise the IS900 fouling-release coating.  相似文献   

6.
M. Alles 《Biofouling》2013,29(5):469-480
Fouling release (FR) coatings are increasingly applied as an environmentally benign alternative for controlling marine biofouling. As the technology relies on removing fouling by water currents created by the motion of ships, weakening of adhesion of adherent organisms is the key design goal for improved coatings. In this paper, a microfluidic shear force assay is used to quantify how easily diatoms can be removed from surfaces. The experimental setup and the optimization of the experimental parameters to study the adhesion of the diatom Navicula perminuta are described. As examples of how varying the physico-chemical surface properties affects the ability of diatoms to bind to surfaces, a range of hydrophilic and hydrophobic self-assembled monolayers was compared. While the number of cells that attached (adhered) was barely affected by the coatings, the critical shear stress required for their removal from the surface varied significantly.  相似文献   

7.
Zargiel KA  Coogan JS  Swain GW 《Biofouling》2011,27(9):955-965
Diatoms are primary colonizers of both antifouling and fouling-release ship hull coatings. There are few published studies which report on diatom community development on modern ship hull coatings. This study reports diatom communities on eight commercial marine ship hull coatings exposed at three static immersion sites along the east coast of Florida, viz. Daytona, Sebastian, and Miami. The coatings tested were three ablative copper systems (Ameron ABC-3, International BRA-640, and Hempel Olympic 76600), two copper-free biocidal systems (E-Paint SN-1, Sherwin Williams HMF), and three fouling-release (FR) systems (International Intersleek 700, International Intersleek 900, and Hempel Hempasil). One hundred and twenty-seven species comprising 44 genera were identified, including some of the more commonly known foulers, viz. Achnanthes, Amphora, Cocconeis, Entomoneis, Licmophora, Melosira, Navicula, Nitzschia, Synedra, and Toxarium. A significant difference was seen among sites, with the more estuarine site, Sebastian, having lower overall diatom abundance and higher diversity than Daytona and Miami. Copper coatings were primarily fouled by Amphora delicatissima and Entomoneis pseudoduplex. Copper-free coatings were fouled by Cyclophora tenuis, A. delicatissima, Achnanthes manifera, and Amphora bigibba. FR surfaces were typified by C. tenuis, and several species of Amphora. The presence of C. tenuis is new to the biofouling literature, but as new coatings are developed, this diatom may be one of many that prove to be problematic for static immersion. Results show coatings can be significantly influenced by geographical area, highlighting the need to test ship hull coatings in locations similar to where they will be utilized.  相似文献   

8.
Paul J. Molino 《Biofouling》2013,29(5):365-379
Diatoms are a major component of microbial slimes that develop on man-made surfaces placed in the marine environment. Toxic antifouling paints, as well as environmentally friendly, fouling-release coatings, tend to be effective against most fouling organisms, yet fail badly to diatom slimes. Biofouling diatoms have been found to tenaciously adhere to and colonise even the most resistant of artificial surfaces. This review covers the basic biology of fouling marine diatoms, their mechanisms of adhesion and the nature of their adhesives, as well as documenting the various approaches that have been utilised to understand the formation and maintenance of diatom biofouling layers.  相似文献   

9.
Molino PJ  Wetherbee R 《Biofouling》2008,24(5):365-379
Diatoms are a major component of microbial slimes that develop on man-made surfaces placed in the marine environment. Toxic antifouling paints, as well as environmentally friendly, fouling-release coatings, tend to be effective against most fouling organisms, yet fail badly to diatom slimes. Biofouling diatoms have been found to tenaciously adhere to and colonise even the most resistant of artificial surfaces. This review covers the basic biology of fouling marine diatoms, their mechanisms of adhesion and the nature of their adhesives, as well as documenting the various approaches that have been utilised to understand the formation and maintenance of diatom biofouling layers.  相似文献   

10.
Many experiments utilize static immersion tests to evaluate the performance of ship hull coatings. These provide valuable data; however, they do not accurately represent the conditions both the hull and fouling organisms encounter while a ship is underway. This study investigated the effect of static and dynamic immersion on the adhesion and settlement of diatoms to one antifouling coating (BRA 640), four fouling-release coatings (Intersleek® 700, Intersleek® 900, Hempasil X3, and Dow Corning 3140) and one standard surface (Intergard® 240 Epoxy). Differences in community composition were observed between the static and dynamic treatments. Achnanthes longipes was present on all coatings under static immersion, but was not present under dynamic immersion. This was also found for diatoms in the genera Bacillaria and Gyrosigma. Melosira moniformis was the only diatom present under dynamic conditions, but not static conditions. Several common fouling diatom genera were present on panels regardless of treatment: Amphora, Cocconeis, Entomoneis Cylindrotheca, Licmophora, Navicula, Nitzschia, Plagiotropis, and Synedra. Biofilm adhesion, diatom abundance and diatom diversity were found to be significantly different between static and dynamic treatments; however, the difference was dependent on coating and sampling date. Several coatings (Epoxy, DC 3140 and IS 700) had significantly higher biofilm adhesion on dynamically treated panels on at least one of the four sampling dates, while all coatings had significantly higher diatom abundance on at least one sampling date. Diversity was significantly greater on static panels than dynamic panels for Epoxy, IS 700 and HX3 at least once during the sampling period. The results demonstrate how hydrodynamic stress will significantly influence the microfouling community. Dynamic immersion testing is required to fully understand how antifouling surfaces will respond to biofilm formation when subjected to the stresses experienced by a ship underway.  相似文献   

11.
Adhesion and motility of fouling diatoms on a silicone elastomer   总被引:1,自引:0,他引:1  
Recent demands for non-toxic antifouling technologies have led to increased interest in coatings based on silicone elastomers that 'release' macrofouling organisms when hydrodynamic conditions are sufficiently robust. However, these types of coatings accumulate diatom slimes, which are not released even from vessels operating at high speeds (>30 knots). In this study, adhesion strength and motility of three common fouling diatoms (Amphora coffeaeformis var. perpusilla (Grunow) Cleve, Craspedostauros australis Cox and Navicula perminuta Grunow) were measured on a poly-dimethylsiloxane elastomer (PDMSE) and acid-washed glass. Adhesion of the three species was stronger to PDMSE than to glass but the adhesion strengths varied. The wall shear stress required to remove 50% of cells from PDMSE was 17 Pa for Craspedostauros, 24 Pa for Amphora and >53 Pa for Navicula; the corresponding values for glass were 3, 10 and 25 Pa. In contrast, the motility of the three species showed little or no correlation between the two surfaces. Craspedostauros moved equally well on glass and PDMSE, Amphora moved more on glass initially before movement ceased and Navicula moved more on PDMSE before movement ceased. The results show that fouling diatoms adhere more strongly to a hydrophobic PDMSE surface, and this feature may contribute to their successful colonization of low surface energy, foul-release coatings. The results also indicate that diatom motility is not related to adhesion strength, and motility does not appear to be a useful indicator of surface preference by diatoms.  相似文献   

12.
Abstract

New processing routes and materials for non-biocidal, antifouling (AF) coatings with an improved performance are currently much sought after for a range of marine applications. Here, the processing, physical properties and marine AF performance of a fluorinated coating based on a thermoplastic (non-crosslinked) fluorinated polymer are reported. It was found that the addition of lubricating oil and hydrodynamic drag reducing microstructures improved the AF properties substantially, i.e. the settlement of a marine biofilm, containing mixed microalgae including diatoms, was reduced to low levels. More importantly, the remaining fouling was removed from the coatings at low hydrodynamic shear rates and promising AF properties were obtained. Moreover, additional potential benefits were revealed originating from the thermoplastic nature of the coating material which might result in significant cost reductions.  相似文献   

13.
Amphiphilic copolymers containing different amounts of poly(ethylene glycol)-fluoroalkyl acrylate and polysiloxane methacrylate units were blended with a poly(dimethyl siloxane) (PDMS) matrix in different proportions to investigate the effect of both copolymer composition and loading on the biological performance of the coatings. Laboratory bioassays revealed optimal compositions for the release of sporelings of Ulva linza, and the settlement of cypris larvae of Balanus amphitrite. The best-performing coatings were subjected to field immersion tests. Experimental coatings containing copolymer showed significantly reduced levels of hard fouling compared to the control coatings (PDMS without copolymer), their performance being equivalent to a coating based on Intersleek 700?. XPS analysis showed that only small amounts of fluorine at the coating surface were sufficient for good antifouling/fouling-release properties. AFM analyses of coatings under immersion showed that the presence of a regular surface structure with nanosized domains correlated with biological performance.  相似文献   

14.
Testing of fouling release (FR) technologies is of great relevance for discovery of the next generation of protective marine coatings. In this paper, an accumulation assay to test diatom interaction under laminar flow with the model organism Navicula perminuta is introduced. Using time lapse microscopy with large area sampling allows determination of the accumulation kinetics of the diatom on three model surfaces with different surface properties at different wall shear stresses. The hydrodynamic conditions within the flow cell are described and a suitable shear stress range to perform accumulation experiments is identified at which statistically significant discrimination of surfaces is possible. The observed trends compare well to published adhesion preferences of N. perminuta. Also, previously determined trends of critical wall shear stresses required for cell removal from the same set of functionalized interfaces shows consistent trends. Initial attachment mediated by extracellular polymeric substances (EPS) present outside the diatoms leads to the conclusion that the FR potential of the tested coating candidates can be deducted from dynamic accumulation experiments under well-defined hydrodynamic conditions. As well as testing new coating candidates for their FR properties, monitoring of the adhesion process under flow provides additional information on the mechanism and geometry of attachment and the population kinetics.  相似文献   

15.
Diatoms are an important component of marine biofilms found on ship hulls. However, there are only a few published studies that describe the presence and abundance of diatoms on ships, and none that relate to modern ship hull coatings. This study investigated the diatom community structure on two in-service cruise ships with the same cruise cycles, one coated with an antifouling (AF) system (copper self-polishing copolymer) and the other coated with a silicone fouling-release (FR) system. Biofilm samples were collected during dry docking from representative areas of the ship and these provided information on the horizontal and vertical zonation of the hull, and intact and damaged coating and niche areas. Diatoms from the genera Achnanthes, Amphora and Navicula were the most common, regardless of horizontal ship zonation and coating type. Other genera were abundant, but their presence was more dependent on the ship zonation and coating type. Samples collected from damaged areas of the hull coating had a similar community composition to undamaged areas, but with higher diatom abundance. Diatom fouling on the niche areas differed from that of the surrounding ship hull and paralleled previous studies that investigated differences in diatom community structure on static and dynamically exposed coatings; niche areas were similar to static immersion and the hull to dynamic immersion. Additionally, diatom richness was greater on the ship with the FR coating, including the identification of several new genera to the biofouling literature, viz. Lampriscus and Thalassiophysa. These results are the first to describe diatom community composition on in-service ship hulls coated with a FR system. This class of coatings appears to have a larger diatom community compared to copper-based AF systems, with new diatom genera that have the ability to stick to ship hulls and withstand hydrodynamic forces, thus creating the potential for new problematic species in the biofilm.  相似文献   

16.
Amphiphilic copolymers containing different amounts of poly(ethylene glycol)-fluoroalkyl acrylate and polysiloxane methacrylate units were blended with a poly(dimethyl siloxane) (PDMS) matrix in different proportions to investigate the effect of both copolymer composition and loading on the biological performance of the coatings. Laboratory bioassays revealed optimal compositions for the release of sporelings of Ulva linza, and the settlement of cypris larvae of Balanus amphitrite. The best-performing coatings were subjected to field immersion tests. Experimental coatings containing copolymer showed significantly reduced levels of hard fouling compared to the control coatings (PDMS without copolymer), their performance being equivalent to a coating based on Intersleek 700?. XPS analysis showed that only small amounts of fluorine at the coating surface were sufficient for good antifouling/fouling-release properties. AFM analyses of coatings under immersion showed that the presence of a regular surface structure with nanosized domains correlated with biological performance.  相似文献   

17.
Abstract

Today, ship hull fouling is managed through fouling-control coatings, complemented with in-water cleaning. During cleaning, coating damage and wear must be avoided, for maximum coating lifetime and reduced antifoulant release. When possible, cleaning should target early stages of fouling, using minimal forces. However, such forces, and their effects on coatings, have not yet been fully quantified. In this one-year study, minimal cleaning forces were determined using a newly-designed immersed waterjet. The results show that bi-monthly/monthly cleaning, with maximum wall shear stress up to ~1.3?kPa and jet stagnation pressure ~0.17?MPa, did not appear to cause damage or wear on either the biocidal antifouling (AF) or the biocide-free foul-release (FR) coatings. The AF coating required bi-monthly cleanings to keep fouling to incipient slime (time-averaged results), while the FR coating had a similar fouling level even without cleaning. The reported forces may be used in matching cleaning parameters to the adhesion strength of the early stages of fouling.  相似文献   

18.
Diatoms are primary colonizers of both antifouling and fouling-release ship hull coatings. There are few published studies which report on diatom community development on modern ship hull coatings. This study reports diatom communities on eight commercial marine ship hull coatings exposed at three static immersion sites along the east coast of Florida, viz. Daytona, Sebastian, and Miami. The coatings tested were three ablative copper systems (Ameron ABC-3, International BRA-640, and Hempel Olympic 76600), two copper-free biocidal systems (E-Paint SN-1, Sherwin Williams HMF), and three fouling-release (FR) systems (International Intersleek 700, International Intersleek 900, and Hempel Hempasil). One hundred and twenty-seven species comprising 44 genera were identified, including some of the more commonly known foulers, viz. Achnanthes, Amphora, Cocconeis, Entomoneis, Licmophora, Melosira, Navicula, Nitzschia, Synedra, and Toxarium. A significant difference was seen among sites, with the more estuarine site, Sebastian, having lower overall diatom abundance and higher diversity than Daytona and Miami. Copper coatings were primarily fouled by Amphora delicatissima and Entomoneis pseudoduplex. Copper-free coatings were fouled by Cyclophora tenuis, A. delicatissima, Achnanthes manifera, and Amphora bigibba. FR surfaces were typified by C. tenuis, and several species of Amphora. The presence of C. tenuis is new to the biofouling literature, but as new coatings are developed, this diatom may be one of many that prove to be problematic for static immersion. Results show coatings can be significantly influenced by geographical area, highlighting the need to test ship hull coatings in locations similar to where they will be utilized.  相似文献   

19.
An antifouling or foul-release coating cannot be globally effective if it does not perform well in a range of environmental conditions, against a diversity of fouling organisms. From 1996 to 1998, the field test sites participating in the United States Navy's Office of Naval Research 6.2 Biofouling program examined global variation in the performance of 3 silicone foul-release coatings, viz. GE RTV11, Dow Corning RTV 3140, and Intersleek (International Coatings Ltd), together with a control anticorrosive coating (Ameron Protective Coatings F-150 series). At the University of Hawaii's test site in Pearl Harbor, significant differences were observed among the coatings in the rate of accumulation of fouling. The control coating failed rapidly; after 180-220 d immersion a community dominated by molluscs and sponges developed that persisted for the remainder of the experiment. Fouling of the GE and Dow Corning silicone coatings was slower, but eventually reached a similar community structure and coverage as the control coatings. The Intersleek coating remained lightly fouled throughout the experiment. Spatial variation in the structure of the community fouling the coatings was observed, but not in the extent of fouling. The rate of accumulation of fouling reflected differences among the coatings in adhesion of the tubeworm Hydroides elegans. The surface properties of these coatings may have affected the rate of fouling and the structure of the fouling community through their influence on larval settlement and subsequent interactions with other residents, predators, and the physical environment.  相似文献   

20.
Polysiloxane coatings containing chemically-bound (“tethered”) quaternary ammonium salt (QAS) moieties were investigated for potential application as environmental-friendly coatings to control marine biofouling. A combinatorial/high-throughput approach was applied to the investigation to enable multiple variables to be probed simultaneously and efficiently. The variables investigated for the moisture-curable coatings included QAS composition, ie alkyl chain length, and concentration as well as silanol-terminated polysiloxane molecular weight. A total of 75 compositionally unique coatings were prepared and characterized using surface characterization techniques and biological assays. Biological assays were based on two different marine microorganisms, a bacterium, Cellulophaga lytica and a diatom, Navicula incerta, as well as a macrofouling alga, Ulva. The results of the study showed that all three variables influenced coating surface properties as well as antifouling (AF) and fouling-release (FR) characteristics. The incorporation of QAS moieties into a polysiloxane matrix generally resulted in an increase in coating surface hydrophobicity. Characterization of coating surface morphology revealed a heterogeneous, two-phase morphology for many of the coatings investigated. A correlation was found between water contact angle and coating surface roughness, with the contact angle increasing with increasing surface roughness. Coatings based on the QAS moiety containing the longest alkyl chain (18 carbons) displayed the highest micro-roughness and, thus, the most hydrophobic surfaces. With regard to AF and FR properties, coatings based on the 18 carbon QAS moieties were very effective at inhibiting C. lytica biofilm formation and enabling easy removal of Ulva sporelings (young plants) while coatings based on the 14 carbon QAS moities were very effective at inhibiting biofilm growth of N. incerta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号