首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The photo‐physical properties of 6,6′‐(9H‐fluoren‐9,9‐diyl)bis(2,3‐bis(9,9‐dihexyl‐9H‐fluoren‐2‐yl)quinoxaline) (BFLBBFLYQ) and its blend doped with N′‐biphenyl‐N,N′‐bis‐(3‐methylphenyl)‐1,1′‐biphenyl‐4,4′‐diamine (TPD) were investigated. The absorption, photoluminescence (PL) and electroluminescence (EL) properties of pristine BFLBBFLYQ and blend in solution and spin‐coated film are outlined, including a discussion of charge‐transfer (CT) exciplex emission of BFLBBFLYQ:TPD blend in the solid state. The luminescent properties of BFLBBFLYQ films using different deposition processes were studied. It was found that the low‐energy emission bands at 530–570 nm appeared in the PL spectra of BFLBBFLYQ evaporated films in ultra‐high vacuum. Also, the low‐energy band was the exclusive emission in the EL spectra of BFLBBFLYQ films. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Excitation spectra of chlorophyll a fluorescence in chloroplasts from spinach and barley were measured at 4.2 K. The spectra showed about the same resolution as the corresponding absorption spectra. Excitation spectra for long-wave chlorophyll a emission (738 or 733 nm) indicate that the main absorption maximum of the photosystem (PS) I complex is at 680 nm, with minor bands at longer wavelengths. From the corresponding excitation spectra it was concluded that the emission bands at 686 and 695 nm both originate from the PS II complex. The main absorption bands of this complex were at 676 and 684 nm. The PS I and PS II excitation spectra both showed a contribution by the light-harvesting chlorophyll ab protein(s), but direct energy transfer from PS II to PS I was not observed at 4 K. Omission of Mg2+ from the suspension favored energy transfer from the light-harvesting protein to PS I. Excitation spectra of a chlorophyll b-less mutant of barley showed an average efficiency of 50–60% for energy transfer from β-carotene to chlorophyll a in the PS I and in the PS II complexes.  相似文献   

3.
Abstract

The present paper deals with the synthesis of novel macrocyclic complexes of the type [MLX]X, where [(M?=?Co(II) (1), and Ni(II) (2) X?=?(Cl2)]. The complexes are synthesized by the reaction of ligand(L)diquinolineno[1,3,7,9]tetraazacyclododecine-7,15-ethane(14H,16H)-benzene with the corresponding metal salts. The synthesized complexes are thoroughly characterized by elemental analysis, FT-IR, 1H-NMR, Mass and electronic spectra. The complexes (1) and (2) were evaluated for in vitro cytotoxicity against human breast adenocarcinoma cell (MCF-7). MTT cytotoxicity studies shows both the complexes are most effective. The binding properties of these complexes with calf thymus-DNA were studied by absorption, emission spectra, viscosity measurements, and thermal denaturation studies. On binding to CT-DNA, the absorption spectrum undergoes bathochromic and hypochromic shifts. The absorption spectral results indicate that the intrinsic binding constant (Kb) are 4.8?×?105?M?1 for (1) and 3.9?×?105?M?1 for (2) respectively, suggesting that complex (1) binds more strongly to CT-DNA than complex (2). The viscosity measurement results revealed the viscosity of sonicated rod like DNA fragments increased when the complex was added to the solution of CT-DNA. The synthesized ligand and its metal complexes are screened for antibacterial and antifungal activities.  相似文献   

4.
V.A. Sineshchekov  F.F. Litvin 《BBA》1977,462(2):450-466
Red luminescence of purple membranes from Halobacterium halobium cells in suspension, dry film or freeze-dried preparations was studied and its emission, excitation and polarization spectra are reported. The emission spectra have three bands at 665–670, 720–730 and at 780–790 nm. The position (maximum at 580 nm) and shape of the excitation spectra are close to those of the absorption spectra. The spectra depend on experimental conditions, in particular on pH of the medium. Acidification increases the long wavelength part of the emission spectra and shifts the main excitation maximum 50–60 nm to the longer wavelength side. Low-temperature light-induced changes of the absorption, emission and excitation spectra are presented. Several absorbing and emitting species of bacteriorhodopsin are responsible for the observed spectral changes. The bacteriorhodopsin photoconversion rate constant was estimated to be about 1 · 1011 s?1 at ? 196°C from the quantum yields of the luminescence (1 · 10?3) and photoreaction (1 · 10?1). The temperature dependence of the luminescence quantum yield points to the existence of two or three quenching processes with different activation energies. High degree of luminescence polarization (about 45–47%) throughout the absorption and fluorescence spectra and its temperature independence show that there is no energy transfer between bacteriorhodopsin molecules and no chromophore rotation during the excitation lifetime. In carotenoid-containing membranes, energy migration from the bulk of carotenoids to bacteriorhodopsin was not found either. Bacteriorhodopsin phosphorescence was not observed in the 500–1100 nm region and the emission is believed to be fluorescence by nature.  相似文献   

5.
Abstract

This paper concentrates on two very important conducting polymers poly(p-phenylene) and polypyrrole. Detailed atomistic molecular models have been developed with the help of ab initio and semi-empirical quantum mechanical calculations using the Cerius2 and WinMOPAC (version 6.0) programs.

Their optimised geometry had been calculated and compared with experimental X-ray diffraction data. The simulated and experimental vibrational spectra of biphenyl as well as isolated pyrrole monomers and oligomers from n = 1 and 2, where n is the number of structural repeat units used, have been computed using the ab initio 3–21G basis set. The results obtained are compared with experimental data for the case of biphenyl and for oligomers with n = 2 to 5 for both neutral benzenoid and quinonoid oligopyrroles, from semi-empirical predictions obtained by AM1 and PM3. The trends in the computed harmonic force fields, vibrational frequencies and intensities are monitored as a function of the chain length. The data are analyzed in conjunction with the trends in computed equilibrium geometries.  相似文献   

6.
Etiolated leaves of three different species, maize, wheat, and pea, as well as a pea mutant (lip1) were used to compare the excitation spectra of protochlorophyllide (Pchlide) in the red region. The species used have different composition of short-wavelength and long-wavelength Pchlide forms. The relation between different forms was furthermore changed through incubating the leaves in 5-aminolevulinic acid (ALA), which caused an accumulation of short-wavelength Pchlide forms, as shown by changes in absorption and fluorescence spectra. This is the first time a comprehensive comparison is made between excitation spectra from different species covering an emission wavelength range of 675–750 nm using fluorescence equipment with electronic compensation for the variations in excitation irradiance. The different forms of Pchlide having excitations peaks at 628, 632, 637, 650, and 672 nm could be best measured at 675, 700, 710, 725, and 750 nm, respectively. Measuring emission at wavelengths between 675– 710 nm gave an exaggeration of the short-wavelength forms and measuring at longer wavelengths gave for the pea leaves an exaggeration of the 672 nm peak. In general, an energy transfer from short-wavelength Pchlide forms to long-wavelength Pchlide forms occurred, but such an energy transfer sometimes seemed to be limited as a result of a discrete location of the Pchlide spectral forms. The excitation spectra resembling the absorption spectrum most were measured at an emission wavelength of 740 nm. Measuring the excitation at 710 nm gave higher intensity of the spectra but the short-wavelength forms were accentuated.  相似文献   

7.
H.J.M. Kramer  H. Kingma  T. Swarthoff  J. Amesz 《BBA》1982,681(3):359-364
Excitation spectra were measured at 4 K of bacteriochlorophyll a fluorescence in reaction center containing pigment-protein complexes obtained from the green photosynthetic bacterium Prosthecochloris aestuarii. Excitation spectra for the longest-wave emission (838 nm) showed bands of bacteriochlorophyll a, carotenoid, and of a pigment with absorption bands at 670, 438 and possibly near 420 nm, which is probably identical to an unidentified porphyrin described in the preceding paper (Swarthoff, T., Kramer, H.J.M. and Amesz, J. (1982) Biochim. Biophys. Acta 681, 354–358). At room temperature the longest-wave emission is stimulated by a magnetic field, which indicates that at least part of the emission is delayed fluorescence brought about by a reversal of the primary charge separation. Below about 150 K no stimulation was observed. The excitation spectra for short-wave emission (828 nm) were very similar to the absorption spectrum of the isolated antenna bacteriochlorophyll a-protein complex, and showed bands of bacteriochlorophyll a only. This indicates that two forms of the antenna protein exist that are spectroscopically similar: a soluble form that is released by treatment with guanidine hydrochloride and a bound form that remains attached to the reaction center complex. The bands of the antenna complexes were weak in the excitation spectra of the 838 nm fluorescence, which indicates that the efficiency of energy transfer to the reaction center complex is low.  相似文献   

8.
PurposeIn this paper, we propose a novel method for human body composition measurement, especially for the bone mineral density (BMD) measurement. The proposed method, using the absorption and differential phase information retrieved from X-ray grating-based interferometer (XGBI) to measure the BMD, has potential to replace dual-energy X-ray absorptiometry (DEXA), which is currently widely used for body composition measurement.MethodsThe DEXA method employs two absorption images acquired at two different X-ray spectra (high energy and low energy) to calculate the human body composition. In this paper, a new method to calculate BMD using a single X-ray measurement is proposed. XGBI is a relatively new X-ray technique that provides absorption, phase and scattering information simultaneously using a single X-ray spectrum. With the absorption and differential phase information retrieved from XGBI, BMD can be measured using only one single X-ray spectrum. Numerical simulations are performed with a body phantom of bone (Cortical, ICRU-44) surrounded by soft tissue (Soft, ICRU-44). BMD is calculated with both the DEXA method and the proposed method.ResultsResults show that BMD can be measured accurately with the proposed method; moreover, better signal-to-noise ratio (SNR) is obtained compared to DEXA.ConclusionWith the proposed method, BMD can be measured with XGBI setup. Further, the proposed method can be realized using current X-ray phase-contrast imaging (XPCI) apparatus without any hardware modification, suggesting that this technique can be a promising supplementary function to current XPCI equipment.  相似文献   

9.
The synthesis, characterization, spectroscopic properties of a new ligand 1,2-bis[2-(4-methyl-7-acetylamino-1,8-naphthyridine)]ethylene (L) and its two binuclear Cu(I) complexes containing triphenylphosphine (PPh3) or bis(diphenylphosphino)methane (dppm), [Cu2(L)(PPh3)4](BF4)2·2CH2Cl2 (1·2CH2Cl2) and [Cu2(L)(dppm)2](BF4)2·4H2O (2·4H2O) are reported. The structural investigation of these compounds based on X-ray crystal analysis shows that the copper(I) centers adopt different coordination geometries, O(N)CuP2+ and NCuP2+ for complexes 1 and 2, respectively. Upon irradiation of a degassed organic solution of L at 365 nm, photoinduced isomerization reaction and an intramolecular proton transfer of ligand L were detailed studied by absorption spectral changes. A spectroscopic investigation involving time-dependent density functional theory calculations allows assignment of the excited states that relate to emission and transient absorption spectra. The observed lower-energy absorption bands appearing in the region of 413 and 418 nm for 1 and 2 in dichloromethane are assigned to ligand-to-ligand charge transfer (LLCT, phosphine → napy) transition in nature. Compared with well-structured solid-state emission originating from ππ transition of ligand L, complexes 1 and 2 exhibit intense room-temperature solid-state emissions with λmax at 586 and 620 nm, respectively. The energy and the shape of the emission bands are clearly different from that of the ligand, indicating the emissions come from different excited states.  相似文献   

10.
BackgroundFörster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical.MethodsWe demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model. ARMES combines 4D measurement of polarized excitation emission matrices (pEEM) with multivariate data analysis to spectrally resolve contributing fluorophores. Multivariate analysis (Parallel Factor, PARAFAC and restricted Tucker3) was used to resolve fluorophore contributions and for modelling the quenching of HSA emission and the HSA-ANS interactions.ResultspEEM spectra were modelled using Tucker3 which accommodates non-linearities introduced by FRET and a priori chemical knowledge was used to optimise the solution, thus resolving three components: HSA emission, ANS emission from indirect FRET excitation, and ANS emission from direct excitation. Perpendicular emission measurements were more sensitive to indirectly excited acceptor emission. PARAFAC modelling of HSA, donor emission, separated ANS FRET interacting (Tryptophan) and non-interacting (Tyrosine) components. This enabled a new way of calculating quenching constants using the multi-dimensional emission of individual donor fluorophores.ConclusionsFRET efficiency could be calculated using the multi-dimensional, resolved emission of the interacting donor fluorophores only which yielded higher ET efficiencies compared to conventional methods.General significanceShows the potential of multidimensional fluorescence measurements and data analysis for more accurate FRET modelling in proteins.  相似文献   

11.
Absorption, fluorescence emission, and fluorescence excitation spectra of stilbazolium merocyanine (1-(n-butyl)-4[(3,5-dimethoxy-4-oxocyclohexa-2,5-dienylidene)ethylidene]-1,4-dihydropyridyne) dye in water solution without and with colloidal silver addition were measured. In the presence of the colloid, besides the absorption band assigned to the protonated species of the dye (at 391 nm), an absorption band related to the free-base species appears at 490 nm. From the absorption and emission spectra, measured at various dye concentrations, follows that the aggregates are not effectively formed. Therefore, the long-wavelength absorption and fluorescence bands have to be related to some dye forms created by the solvatochromic effects. The fluorescence bands of the protonated and the free-base species are located at 559 nm and at about 630 nm, respectively. The shape of the long-wavelength band suggests the occurrence of more than one free-base form of the dye. At some dye and colloid concentrations, the global emission of the sample is enhanced as a result of silver addition. The increase in the emission yield of the dye could be partially due to not only the change in the concentrations of dye forms exhibiting various emission yields but is also due to the resonance surface plasmon effect. Because of the superposition of several effects, before the practical application of merocyanine as an indicator of metal presence in biological samples, its spectral properties in the system investigated should be established.  相似文献   

12.
Different concentrations of Sm2O3-doped lead borosilicate glass were synthesized using a melt–quenching method and their characteristics were analyzed using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy absorption, emission, and decay curves. From the XRD patterns, the noncrystalline nature of titled glass was confirmed. The structural groups that existed in the host glass were observed from FTIR spectra. The Judd–Ofelt (JO) intensity parameters and oscillator strengths were derived from the absorption spectra and compared with various reported systems. The excitation luminescence levels of the Sm3+ ion radiative properties were further computed using the JO intensity parameters. Effective bandwidth, emission cross-sections (σe), and several lasing properties were assessed from emission spectra and compared with other reported glass systems. The decay curves of the 4G5/2 level of Sm3+ ion were also been measured and examined. Additionally, the colour coordinates of the Commission International de I'Éclairage chromaticity were assessed. The titled glass were suitable for visible reddish orange luminescence devices based on all obtained parameters.  相似文献   

13.
Since akinete germination is triggered by light and the action spectrum for this process has features in common with the spectra of the two photochromic pigments, phycochromes b and d, a search was made for the presence of these phycochromes in akinetes of the blue-green alga. Anabaena variabilis Kützing. Allophycocyanin-B was also looked for, since the action spectrum for akinete germination points to a possible participation of this pigment too. Isoelectric focusing was used for purification of the pigments. The different fractions were investigated for phycochromes b and d by measuring the absorbance difference spectra: for phycochrome b. 500 nm irradiated minus 570 nm irradiated, and for phycochrome d, 650 nm irradiated minus 610 nm irradiated. For determination of allophycocyanin-B. fourth derivative analysis of absorption spectra was made for some of the fractions from the isoelectric focusing column. Phycochrome b was also assayed for by measuring in vivo absorption difference spectra. The assays were positive for all three pigments. The complete photosynthetic pigment systems were also studied by in vivo fluorescence measurements on both akinetes and vegetative cells of Anabaena variabilis. Fluorescence emission and excitation spectra at selected emission wavelengths were measured at room temperature and liquid nitrogen temperature. The energy transfer from phycoerythrocyanin to phycocyanin is very efficient under all conditions, as is the energy transfer from phycocyanin to allophycocyanin at room temperature. At low temperature, however, phycocyanin is partly decoupled from allophycocyanin, particularly in the akinetes; the energy transfer from allophycocyanin to chlorophyll a is less efficient at low temperature in both types of cells, but especially in akinetes. Delayed light emission was measured for both types of cells and found to be very weak in akinetes compared to vegetative cells. From this study it would seem that akinetes lack an active photosystem II, although the 691 nm peak in the 570 nm excited low temperature fluorescence emission spectrum proves the presence of photosystem II chlorophyll, and also its energetic connection to the phycobilisomes.  相似文献   

14.
The concentration dependence of the ultraviolet absorption spectrum of aqueous solutions of caffeine has been studied. Individual species spectra have been derived for the monomer, dimer, and tetramer of caffeine. The emission spectrum of caffeine in aqueous solution and the dichroic spectra in oriented poly(vinyl alcohol) and polyethylene films have been measured. The long-wavelength tail of the absorption spectrum of caffeine in non-polar environment has been found to incorporate at least one carbonyl(π*, n) transition. Dichroic spectral data and molecular orbital calculations have been used to assign transition moment directions to the (π*,π) transitions. The lowest energy (π*,π) transition, responsible for the near-ultraviolet absorption peak in aqueous solution of caffeine, has been used for the study of degenerate exciton interactions in the dimeric species of caffeine. Assuming that the caffeine molecules in the dimer are stacked in parallel planes, theoretical calculations of the ground-state interactions and of the degenerate exciton interactions have been combined with experimental data and a unique model for the dimer of caffeine has been derived. The transfer rate of energy between the molecules in the dimer is of the order of 1013S?1.  相似文献   

15.
Stannous chloride (SnCl2) is a reducing chemical agent used in several man-made products. SnCl2 can generate reactive oxygen species (ROS); therefore, studies have been carried out in order to better understand its damaging action in biological systems. In this work, calf thymus DNA, triphosphate nucleotides and isolated bases were incubated with SnCl2 and the results were analyzed through UV spectrophotometry. The presence of stannous ions altered the absorption spectra of all three isolates. The amount of stannous ions associated to DNA was measured by atomic absorption spectrophotometry. Data showed that more than 40% of the initial SnCl2 concentration was present in the samples. Our results are in accordance with the damaging potential of this salt and present evidence that stannous ions can complex with DNA, inducing ROS in its vicinity, which may be responsible for the observed lesions. (Mol Cell Biochem xxx: 173–179, 2005)  相似文献   

16.
Absorption and fluorescence spectra of the C-phycocyanin beta-subunit were quantitatively deconvoluted into component spectra of the beta-84 and beta-155 chromophores. The deconvolution procedure was based on a theoretical treatment of polarization properties. Four kinds of spectra (absorption, emission, emission polarization, and excitation polarization) measured on C-phycocyanin isolated from the cyanobacterium Mastigocladus laminosus were used as the experimental data set. Without any assumption of spectral shape, the absorption and fluorescence spectra of both chromophores were unambiguously resolved and their fluorescence quantum yields were evaluated. By combining the spectra of the alpha-subunit, independently measured, with the resolved spectra of the beta-subunit, the fluorescence and fluorescence polarization spectra and the fluorescence quantum yield of the monomer were estimated; they agree with experimental values to within an acceptable error. Further, the matrix of energy transfer rates in the monomer was estimated; it gave a significantly different result (by up to 40%) from previously estimated ones.  相似文献   

17.
The synthesis of new bitropone derivatives, namely, 3,3'‐biphenyl‐2,2'‐bitropone and 7,7’‐biphenyl‐2,2'‐bitropone, are reported. Isolation of enantiomers arising from restricted rotation around the C‐C bond connecting the tropone moieties was attempted by means of chiral high performance liquid chromatography (HPLC). No separation was obtained for 7,7’‐biphenyl‐2,2'‐bitropone. For 3,3'‐biphenyl‐2,2'‐bitropone, difficulties were encountered because of the low separation factor of the peaks and the presence of a rapid racemization process. However, quantitative chiroptical data on the antipodes were obtained by linking a circular dichroism (CD) spectrometer and a UV–vis spectrophotometric detector in series to the HPLC instrument. The analysis of the CD and UV–vis spectra in terms of absolute conformations was done with the help of theoretical calculations performed at the Density Functional Theory (DFT) level. The most stable conformations of the 3,3'‐biphenyl‐2,2'‐bitropone in its ground state were obtained. Starting from these minimum energy conformations, it was possible to compute theoretical CD and UV absorption spectra that fit well with the experimental ones. From this comparison the absolute configuration to the antipodes was assigned. Finally, the effect of the presence of the two lateral phenyl substituents on the structure of the bitropone and hence on the CD spectrum is discussed. Chirality 25:648–655, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
NeIX and NeX spectra emitted by the PF-3 high-current (2 MA) plasma focus facility are measured. A numerical model describing the spectral intensities of the emission of helium- and hydrogen-like neon ions from an optically thick plasma is proposed. The electron temperature T e and electron density n e in the plasma of the PF-3 facility are determined by comparing the calculated and measured emission spectra of neon.  相似文献   

19.
The Bothnian Sea in the northerly part of the Baltic Sea is a geologically recent brackish‐water environment, and rapid speciation is occurring in the algal community of the Bothnian Sea. We measured low‐temperature fluorescence emission spectra from the Bothnian Sea and the Norwegian Sea ecotypes of Fucus vesiculosus L., a marine macroalga widespread in the Bothnian Sea. Powdered, frozen thallus was used to obtain undistorted emission spectra. The spectra were compared with spectra measured from the newly identified species Fucus radicans Bergström et L. Kautsky, which is a close relative of F. vesiculosus and endemic to the Bothnian Sea. The spectrum of variable fluorescence was used to identify fluorescence peaks originating in PSI and PSII in this chl c–containing alga. The spectra revealed much higher PSII emission, compared to PSI emission, in the Bothnian Sea ecotype of F. vesiculosus than in F. radicans or in the Norwegian Sea ecotype of F. vesiculosus. The results suggest that more light‐harvesting chl a/c proteins serve PSII in the Bothnian Sea ecotype of F. vesiculosus than in the two other algal strains. Treatment of the Bothnian Sea ecotype of F. vesiculosus in high salinity (10, 20, and 35 practical salinity units) for 1 week did not lead to spectral changes, indicating that the measured features of the Bothnian Sea F. vesiculosus are stable and not simply a direct result of exposure to low salinity.  相似文献   

20.
We report on the comprehension of novel europium activated hybrid organic Eu(dmh)3phen (Eu: europium, dmh: 2,6‐dimethyl‐3,5‐heptanedione, phen: 1,10 phenanthroline) organo‐metallic complexes, synthesized at different pH values by the solution technique. Photo physical properties of these complexes in various basic and acidic solvents were probed by UV–vis optical absorption and photoluminescence (PL) spectra. Minute differences in optical absorption peaks with variable optical densities were encountered with the variation in solvent from basic (chloroform, toluene, tetrahydrofuran) to acidic (acetic acid) media, revealing bathochromic shift in the absorption peaks. The PL spectra of the complex in various acidic and basic organic solvents revealed the position of the emission peak at 613 nm irrespective of the changes in solvents whereas the excitation spectrum almost matched with that of the UV–vis absorption data. The optical density was found to be maximum for the complex with pH 7.0 whereas it gradually decreased when pH was lowered to 6.0 or raised to 8.0 at an interval of 0.5, demonstrating its pH sensitive nature. Several spectroscopic parameters related to probability of transition such as absorbance A(λ), Napierian absorption coefficient α(λ), molecular absorption cross‐section σ(λ), radiative lifetime (τ0) and oscillator strength (f) were calculated from UV–vis spectra. The relative intensity ratio (R‐ratio), calculated from the emission spectra was found to be almost the same in all the organic solvents. The optical energy gap, calculated for the designed complexes were found to be well in accordance with the ideal acceptance value of energy gap of the emissive materials used for fabrication of red organic light‐emitting diode (OLED). The relation between Stoke's shift and solvent polarity function was established by Lippert–Mataga plot. This remarkable independence of the electronic absorption spectra of Eu complexes on the nature of the solvent with unique emission wavelength furnishes its potential to serve as a red light emitter for solution processed OLEDs, display panels and solid‐state lighting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号