首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Iron plaque occurs on the roots of most wetland and submersed aquatic plant species and is a large pool of oxidized Fe(III) in some environments. Because plaque formation in wetlands with circumneutral pH has been largely assumed to be an abiotic process, no systematic effort has been made to describe plaque-associated microbial communities or their role in plaque deposition. We hypothesized that Fe(II)-oxidizing bacteria (FeOB) and Fe(III)-reducing bacteria (FeRB) are abundant in the rhizosphere of wetland plants across a wide range of biogeochemical environments. In a survey of 13 wetland and aquatic habitats in the Mid-Atlantic region, FeOB were present in the rhizosphere of 92% of the plant specimens collected (n = 37), representing 25 plant species. In a subsequent study at six of these sites, bacterial abundances were determined in the rhizosphere and bulk soil using the most probable number technique. The soil had significantly more total bacteria than the roots on a dry mass basis (1.4 × 109 cells/g soil vs. 8.6 × 107 cells/g root; p < 0.05). The absolute abundance of aerobic, lithotrophic FeOB was higher in the soil than in the rhizosphere (3.7 × 106/g soil vs. 5.9 × 105/g root; p < 0.05), but there was no statistical difference between these habitats in terms of relative abundance (1% of the total cell number). In the rhizosphere, FeRB accounted for an average of 12% of all bacterial cells while in the soil they accounted for < 1% of the total bacteria. We concluded that FeOB are ubiquitous and abundant in wetland ecosystems, and that FeRB are dominant members of the rhizosphere microbial community. These observations provide a strong rationale for quantifying the contribution of FeOB to rhizosphere Fe(II) oxidation rates, and investigating the combined role of FeOB and FeRB in a rhizosphere iron cycle.  相似文献   

2.
Helical stalks (resembling Gallionella ferruginea, Mariprofundus ferrooxydans) and filamentous sheaths (resembling Leptothrix ochracea) of Fe2+-oxidizing bacteria (FeOB) are mineralized by hydrous ferric oxides (HFO). To perform both inter-species and inter-site size comparisons of HFO particles on stalks and sheaths we measured HFO particles in samples of natural bacteriogenic iron oxides (BIOS) from 3 contrasting field sites: the Loihi Seamount (southern Hawaii); Äspö Hard Rock Laboratory (eastern Sweden); and Chalk River Laboratories (northern Canada) representing seafloor saline, underground brackish, and surface freshwater aqueous conditions. Ambient temperatures were in the psychrophilic range and pHs measured for Loihi, CRL, and Äspö were 5.6, 6.9 and 7.4, respectively. Dissolved Fe was lowest for CRL (0.2 mg · L?1) followed by Äspö (1.5 mg · L?1), then Loihi (4.5–14.9 mg · L?1). L. ochraceasheaths appear to have surface properties that restrict HFO particle growth in comparison to G.ferruginea-M.ferrooxydans stalks in the same environment, which we attribute to interfacial surface energy (γ). An inverse relationship between particle size and stalk/sheath length due to restrictions in reactive surface area was also observed, which may provide insight into FeOB survival strategies to alleviate oxidative stress arising from Fe3+ production.  相似文献   

3.
The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long −149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides.  相似文献   

4.
Heavy metal‐contaminated, pH 6 mine water discharge created new streams and iron‐rich terraces at a creek bank in a former uranium‐mining area near Ronneburg, Germany. The transition from microoxic groundwater with ~5 mm Fe(II) to oxic surface water may provide a suitable habitat for microaerobic iron‐oxidizing bacteria (FeOB). In this study, we investigated the potential contribution of these FeOB to iron oxidation and metal retention in this high‐metal environment. We (i) identified and quantified FeOB in water and sediment at the outflow, terraces, and creek, (ii) studied the composition of biogenic iron oxides (Gallionella‐like twisted stalks) with scanning and transmission electron microscopy (SEM, TEM) as well as confocal laser scanning microscopy (CLSM), and (iii) examined the metal distribution in sediments. Using quantitative PCR, a very high abundance of FeOB was demonstrated at all sites over a 6‐month study period. Gallionella spp. clearly dominated the communities, accounting for up to 88% of Bacteria, with a minor contribution of other FeOB such as Sideroxydans spp. and ‘Ferrovum myxofaciens’. Classical 16S rRNA gene cloning showed that 96% of the Gallionella‐related sequences had ≥97% identity to the putatively metal‐tolerant ‘Gallionella capsiferriformans ES‐2’, in addition to known stalk formers such as Gallionella ferruginea and Gallionellaceae strain R‐1. Twisted stalks from glass slides incubated in water and sediment were composed of the Fe(III) oxyhydroxide ferrihydrite, as well as polysaccharides. SEM and scanning TEM‐energy‐dispersive X‐ray spectroscopy revealed that stalk material contained Cu and Sn, demonstrating the association of heavy metals with biogenic iron oxides and the potential for metal retention by these stalks. Sequential extraction of sediments suggested that Cu (52–61% of total sediment Cu) and other heavy metals were primarily bound to the iron oxide fractions. These results show the importance of ‘G. capsiferriformans’ and biogenic iron oxides in slightly acidic but highly metal‐contaminated freshwater environments.  相似文献   

5.
David Emerson 《Biofouling》2013,29(9):989-1000
Abstract

Lithotrophic iron-oxidizing bacteria depend on reduced iron, Fe(II), as their primary energy source, making them natural candidates for growing in association with steel infrastructure and potentially contributing to microbially influenced corrosion (MIC). This review summarizes recent work on the role of iron-oxidizing bacteria (FeOB) in MIC. By virtue of producing complex 3-dimensional biofilms that result from the accumulation of iron-oxides, FeOB may aid in the colonization of steel surfaces by other microbes involved in MIC. Evidence points to a successional pattern occurring whereby FeOB are early colonizers of mild steel (MS), followed by sulfate-reducing bacteria and other microbes, although studies of aged corrosion products indicate that FeOB do establish a long-term presence. There is evidence that only specific clades of FeOB, with unique adaptations for growing on steel surfaces are part of the MIC community. These are discussed in the context of the larger MIC microbiome.  相似文献   

6.
Morphological characteristics of two Pedomicrobium-like budding bacteria are described. A structured surface layer was regularly observed on strain 868. Ruthenium red- and Alcian blue-staining polymers were found on both strains.When either strain was grown in the presence of iron or manganese, the corresponding oxides accumulated on their surfaces. In thin sections iron oxides appeared as fine threads, arrays of particles or dense coatings, depending on the source of iron. Manganese oxides appeared as branching filaments or convoluted ribbons. Both metal oxides stained with ruthenium red. Extraction of the oxides followed by ruthenium red staining revealed that polyanionic polymers previously deposited on the cells were associated with the metals.Treatment of cultures with glutaraldehyde, HgCl2, or heat, inhibited manganese but not iron deposition, suggesting that iron oxides accumulated by passive, non-biological processes. Manganese oxides apparently accumulated under control of a biological manganese-oxidizing factor. Incomplete inhibition of manganese deposition observed in cell suspensions suggested that, if the oxidizing factor was an enzyme, it was unusually stable.Based on these results, possible mechanisms of iron and manganese deposition in association with extracellular polymers are suggested.  相似文献   

7.
Neutrophilic Fe-oxidizing bacteria (FeOB) are often identified by their distinctive morphologies, such as the extracellular twisted ribbon-like stalks formed by Gallionella ferruginea or Mariprofundus ferrooxydans. Similar filaments preserved in silica are often identified as FeOB fossils in rocks. Although it is assumed that twisted iron stalks are indicative of FeOB, the stalk''s metabolic role has not been established. To this end, we studied the marine FeOB M. ferrooxydans by light, X-ray and electron microscopy. Using time-lapse light microscopy, we observed cells excreting stalks during growth (averaging 2.2 μm h−1). Scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy show that stalks are Fe(III)-rich, whereas cells are low in Fe. Transmission electron microscopy reveals that stalks are composed of several fibrils, which contain few-nanometer-sized iron oxyhydroxide crystals. Lepidocrocite crystals that nucleated on the fibril surface are much larger (∼100 nm), suggesting that mineral growth within fibrils is retarded, relative to sites surrounding fibrils. C and N 1s NEXAFS spectroscopy and fluorescence probing show that stalks primarily contain carboxyl-rich polysaccharides. On the basis of these results, we suggest a physiological model for Fe oxidation in which cells excrete oxidized Fe bound to organic polymers. These organic molecules retard mineral growth, preventing cell encrustation. This model describes an essential role for stalk formation in FeOB growth. We suggest that stalk-like morphologies observed in modern and ancient samples may be correlated confidently with the Fe-oxidizing metabolism as a robust biosignature.  相似文献   

8.
Abundance and structure of the communities of neutrophilic lithotrophic iron-oxidizing bacteria (FeOB) inhabiting four low-mineralized ferruginous springs of the Marcial Waters Resort (South Karelia, Russia) and the brackish chalybeate spring of the Staraya Russa Resort (Novgorod region, Russia), were investigated, as well as the physicochemical conditions of these environments. In fresh iron-containing precipitates collected near the spring outlets and within the spring-discharge areas, as well as along the spring watercourses, the numbers of unicellular FeOB enumerated on nutrient media ranged from 105 to 107 cells per 1 mL of sediments irrespective of the initial Fe(II) concentration (11–126 mg L−1). In the spring waters and along the spring watercourses inhabited by iron-oxidizing bacteria, the concentration of dissolved oxygen did not exceed 0.05–0.1 mg L−1. Unicellular FeOB were predominant in three springs, while in the springs with relatively low Fe(II) concentrations (11–22 mg L−1), various morphological forms of Gallionella and uncultured forms of the iron-oxidizing bacterium Toxothrix trichogenes prevailed. In the model experiments with the water samples collected in the ferruginous springs and bogs under controlled conditions, the fractionation of stable iron isotopes and the rate of iron oxidation were found to depend on the oxygen regime and, to a lesser extent, on the initial Fe(II) concentration. The maximum enrichment of the iron oxides formed during the simulation experiments with the light 54Fe isotope was observed during bacterial oxidation under microaerobic conditions at O2 concentrations of 0.1–0.3 mg L−1 and in the cultures of iron-oxidizing bacteria. During the abiogenic oxidation of Fe(II), the extent of stable isotope fractionation was 1.5–2 times lower. Enrichment of Fe(III) oxides with the light 54Fe isotope (3- to 5-fold) was considerably lower at high rates of both the biogenic and abiogenic processes of iron oxidation under aerobic conditions; however, it was more intense during the bacterial processes. Comparison of the rates of enrichment of Fe(III) oxides with the light isotope during the model experiments with pure and enrichment cultures of iron-oxidizing bacteria from the sediments of ferruginous springs and bogs revealed that the biogenic factor plays a key role in the oxidation processes of the iron cycle, as well as in the differentiation of the composition of stable iron isotopes in the studied ecosystems.  相似文献   

9.
Microbiologically influenced corrosion (MIC) of mild steel in seawater is an expensive and enduring problem. Little attention has been paid to the role of neutrophilic, lithotrophic, iron-oxidizing bacteria (FeOB) in MIC. The goal of this study was to determine if marine FeOB related to Mariprofundus are involved in this process. To examine this, field incubations and laboratory microcosm experiments were conducted. Mild steel samples incubated in nearshore environments were colonized by marine FeOB, as evidenced by the presence of helical iron-encrusted stalks diagnostic of the FeOB Mariprofundus ferrooxydans, a member of the candidate class "Zetaproteobacteria." Furthermore, Mariprofundus-like cells were enriched from MIC biofilms. The presence of Zetaproteobacteria was confirmed using a Zetaproteobacteria-specific small-subunit (SSU) rRNA gene primer set to amplify sequences related to M. ferrooxydans from both enrichments and in situ samples of MIC biofilms. Temporal in situ incubation studies showed a qualitative increase in stalk distribution on mild steel, suggesting progressive colonization by stalk-forming FeOB. We also isolated a novel FeOB, designated Mariprofundus sp. strain GSB2, from an iron oxide mat in a salt marsh. Strain GSB2 enhanced uniform corrosion from mild steel in laboratory microcosm experiments conducted over 4 days. Iron concentrations (including precipitates) in the medium were used as a measure of corrosion. The corrosion in biotic samples (7.4 ± 0.1 mM) was significantly higher than that in abiotic controls (5.0 ± 0.1 mM). These results have important implications for the role of FeOB in corrosion of steel in nearshore and estuarine environments. In addition, this work shows that the global distribution of Zetaproteobacteria is far greater than previously thought.  相似文献   

10.
11.
Anaerobic iron uptake by Escherichia coli.   总被引:3,自引:1,他引:2       下载免费PDF全文
Assimilation and uptake of iron in anaerobic cultures of Escherichia coli were supported by iron supplied as ferrienterobactin, ferrichrome, and ferrous ascorbate; however, as in the aerobic cultures, ferrichrome A was a poor iron source. Albomycin inhibited both aerobically and anaerobically grown cells. The siderophore outer membrane receptor proteins FepA and FhuA were produced under anaerobic iron-deficient conditions. Anaerobic transport of ferrienterobactin and ferrichrome was inhibited by KCN and dinitrophenol. The Km for ferrienterobactin uptake in anaerobically grown cells was 0.8 microM, and the Vmax was 38 pmol/min per mg, compared with 0.1 microM and 80 pmol/min per mg, respectively, in aerobically grown cells.  相似文献   

12.
Microaerophilic Fe(II)‐oxidizing bacteria produce biomineralized twisted and branched stalks, which are promising biosignatures of microbial Fe oxidation in ancient jaspers and iron formations. Extracellular Fe stalks retain their morphological characteristics under experimentally elevated temperatures, but the extent to which natural post‐depositional processes affect fossil integrity remains to be resolved. We examined siliceous Fe deposits from laminated mounds and chimney structures from an extinct part of the Jan Mayen Vent Fields on the Arctic Mid‐Ocean Ridge. Our aims were to determine how early seafloor diagenesis affects morphological and chemical signatures of Fe‐oxyhydroxide biomineralization and how extracellular stalks differ from abiogenic features. Optical and scanning electron microscopy in combination with focused ion beam‐transmission electron microscopy (FIB‐TEM) was used to study the filamentous textures and cross sections of individual stalks. Our results revealed directional, dendritic, and radial arrangements of biogenic twisted stalks and randomly organized networks of hollow tubes. Stalks were encrusted by concentric Fe‐oxyhydroxide laminae and silica casings. Element maps produced by energy dispersive X‐ray spectroscopy (EDS) in TEM showed variations in the content of Si, P, and S within filaments, demonstrating that successive hydrothermal fluid pulses mediate early diagenetic alteration and modify the chemical composition and surface features of stalks through Fe‐oxyhydroxide mineralization. The carbon content of the stalks was generally indistinguishable from background levels, suggesting that organic compounds were either scarce initially or lost due to percolating hydrothermal fluids. Dendrites and thicker abiotic filaments from a nearby chimney were composed of nanometer‐sized microcrystalline iron particles and silica and showed Fe growth bands indicative of inorganic precipitation. Our study suggests that the identification of fossil stalks and sheaths of Fe‐oxidizing bacteria in hydrothermal paleoenvironments may not rely on the detection of organic carbon and demonstrates that abiogenic filaments differ from stalks and sheaths of Fe‐oxidizing bacteria with respect to width distribution, ultrastructure, and textural context.  相似文献   

13.
Biogeochemical cycling of iron and sulphur in leaching environments   总被引:2,自引:0,他引:2  
Abstract: Bacterial dissimilatory reduction of iron and sulphur in extremely acidic environments is described. Evidence for reduction at two disused mine sites is presented, within stratified 'acid streamers' growths and in sediments from an acid mine drainage stream. A high proportion (approx. 40%) of mesophilic heterotrophic acidophiles were found to be capable of reducing ferric iron (soluble and insoluble forms) under microaerophilic and anoxic conditions. Mixed cultures of Thiobacillus ferrooxidans and Acidiphilium -like isolate SJH displayed cycling of iron in shake flask and fermenter cultures. Oxido-reduction of iron in mixed cultures was determined by oxygen concentration and availability of organic substrates. Some moderately thermophilic iron-oxidis- ing bacteria were also shown to be capable of reducing ferric iron under conditions of limiting oxygen when grown in glycerol/yeast extract or elemental sulphur media. Cycling of iron was observed in pure cultures of these acidophiles. Sulphate-reducing bacteria isolated from acid streamers could be grown in acidified glycerol/yeast extract media (as low as pH 2.9), but not in media used conventionally for their laboratory culture. An endospore-forming, non-motile rod resembling Desulfotomaculum has been isolated. This bacterium has a wide pH spectrum, and appears to be acid-tolerant rather than acidophilic.  相似文献   

14.

Leptospirillum ferriphilum and Acidithiobacillus caldus are both thermotolerant acidophilic bacteria that frequently co-exist in natural and man-made environments, such as biomining sites. Both are aerobic chemolithotrophs; L. ferriphilum is known only to use ferrous iron as electron donor, while A. caldus can use zero-valent and reduced sulfur, and also hydrogen, as electron donors. It has recently been demonstrated that A. caldus reduces ferric iron to ferrous when grown aerobically on sulfur. Experiments were carried out which demonstrated that this allowed L. ferriphilum to be sustained for protracted periods in media containing very little soluble iron, implying that dynamic cycling of iron occurred in aerobic mixed cultures of these two bacteria. In contrast, numbers of viable L. ferriphilum rapidly declined in mixed cultures that did not contain sulfur. Data also indicated that growth of A. caldus was partially inhibited in the presence of L. ferriphilum. This was shown to be due to greater sensitivity of the sulfur-oxidizer to ferric than to ferrous iron, and to highly positive redox potentials, which are characteristic of cultures containing Leptospirillum spp. The implications of these results in the microbial ecology of extremely acidic environments and in commercial bioprocessing applications are discussed.

  相似文献   

15.
Seasonal variations in anaerobic respiration pathways were investigated at three saltmarsh sites using chemical data, sulfate reduction rate measurements, enumerations of culturable populations of anaerobic iron-reducing bacteria (FeRB), and quantification of in situ 16S rRNA hybridization signals targeted for sulfate-reducing bacteria (SRB). Bacterial sulfate reduction in the sediments followed seasonal changes in temperature and primary production of the saltmarsh, with activity levels lowest in winter and highest in summer. In contrast, a dramatic decrease in the FeRB population size was observed during summer at all sites. The collapse of FeRB populations during summer was ascribed to high rates of sulfide production by SRB, resulting in abiotic reduction of bioavailable Fe(III) (hydr)oxides. To test this hypothesis, sediment slurry incubations at 10, 20 and 30 °C were carried out. Increases in temperature and labile organic carbon availability (acetate or lactate additions) increased rates of sulfate reduction while decreasing the abundance of culturable anaerobic FeRB. These trends were not reversed by the addition of amorphous Fe(III) (hydr)oxides to the slurries. However, when sulfate reduction was inhibited by molybdate, no decline in FeRB growth was observed with increasing temperature. Addition of dissolved sulfide adversely impacted propagation of FeRB whether molybdate was added or not. Both field and laboratory data therefore support a sulfide-mediated limitation of microbial iron respiration by SRB. When total sediment respiration rates reach their highest levels during summer, SRB force a decline in the FeRB populations. As sulfate reduction activity slows down after the summer, the FeRB are able to recover.  相似文献   

16.
Bacterial phosphating of mild (unalloyed) steel   总被引:2,自引:0,他引:2  
Mild (unalloyed) steel electrodes were incubated in phosphate-buffered cultures of aerobic, biofilm-forming Rhodococcus sp. strain C125 and Pseudomonas putida mt2. A resulting surface reaction leading to the formation of a corrosion-inhibiting vivianite layer was accompanied by a characteristic electrochemical potential (E) curve. First, E increased slightly due to the interaction of phosphate with the iron oxides covering the steel surface. Subsequently, E decreased rapidly and after 1 day reached -510 mV, the potential of free iron, indicating the removal of the iron oxides. At this point, only scattered patches of bacteria covered the surface. A surface reaction, in which iron was released and vivianite precipitated, started. E remained at -510 mV for about 2 days, during which the vivianite layer grew steadily. Thereafter, E increased markedly to the initial value, and the release of iron stopped. Changes in E and formation of vivianite were results of bacterial activity, with oxygen consumption by the biofilm being the driving force. These findings indicate that biofilms may protect steel surfaces and might be used as an alternative method to combat corrosion.  相似文献   

17.
Mild (unalloyed) steel electrodes were incubated in phosphate-buffered cultures of aerobic, biofilm-forming Rhodococcus sp. strain C125 and Pseudomonas putida mt2. A resulting surface reaction leading to the formation of a corrosion-inhibiting vivianite layer was accompanied by a characteristic electrochemical potential (E) curve. First, E increased slightly due to the interaction of phosphate with the iron oxides covering the steel surface. Subsequently, E decreased rapidly and after 1 day reached −510 mV, the potential of free iron, indicating the removal of the iron oxides. At this point, only scattered patches of bacteria covered the surface. A surface reaction, in which iron was released and vivianite precipitated, started. E remained at −510 mV for about 2 days, during which the vivianite layer grew steadily. Thereafter, E increased markedly to the initial value, and the release of iron stopped. Changes in E and formation of vivianite were results of bacterial activity, with oxygen consumption by the biofilm being the driving force. These findings indicate that biofilms may protect steel surfaces and might be used as an alternative method to combat corrosion.  相似文献   

18.
Aerobic neutrophilic Fe‐oxidizing bacteria (FeOB) thrive where oxic and iron‐rich anoxic waters meet. Here, iron microbial mats are commonly developed by stalk‐forming Fe‐oxidizers adapted to these iron‐rich gradient environments, somehow avoiding iron encrustation. Few details are known about FeOB physiology; thus, the bases of these adaptations, notably the mechanisms of interactions with iron, are poorly understood. We examined two stalked FeOB: the marine Zetaproteobacterium Mariprofundus ferrooxydans and a terrestrial Betaproteobacterium Gallionella‐like organism. We used cryo‐transmission electron microscopy and cryo‐electron tomography to provide unprecedented ultrastructural data on intact cell‐mineral systems. Both FeOB localize iron mineral formation at stalk extrusion sites, while avoiding surface and periplasmic mineralization. The M. ferrooxydans cell surface is densely covered in fibrils while the terrestrial FeOB surface is smooth, suggesting a difference in surface chemistry. Only the terrestrial FeOB exhibited a putative chemotaxis apparatus, which may be due to differences in chemotaxis mechanisms. Both FeOB have a single flagellum, which alone is insufficient to account for cell motion during iron oxidation, suggesting that stalk extrusion is a mechanism for motility. Our results delineate the physical framework of iron transformations and characterize possible structural adaptations to the iron‐oxidizing lifestyle. This study shows ultrastructural similarities and differences between two distinct FeOB, setting the stage for further (e.g. genomic) comparisons that will help us understand functional differences and evolutionary history.  相似文献   

19.
Synthetic iron oxides (goethite, -FeO·OH; hematite, Fe2O3; and ferrihydrite, Fe(OH)3) were used as model compounds to simulate the mineralogy of surface films on carbon steel. Dissolution of these oxides exposed to pure cultures of the metal-reducing bacterium, Shewanella putrefaciens, was followed by direct atomic absorption spectroscopy measurement of ferrous iron coupled with microscopic analyses using confocal laser scanning and environmental scanning electron microscopies. During an 8-day exposure the organism colonized mineral surfaces and reduced solid ferric oxides to soluble ferrous ions. Elemental composition, as monitored by energy dispersive x-ray spectroscopy, indicated mineral replacement reactions with both ferrihydrite and goethite as iron reduction occurred. When carbon steel electrodes were exposed to S. putrefaciens, microbiologically influenced corrosion was demonstrated electrochemically and microscopically.  相似文献   

20.
Population densities of anaerobic Fe(III)-reducing bacteria (FeRB) and aerobic heterotrophs were inversely correlated in the surficial (0-2 cm) layers of Sapelo Island, Georgia, salt marsh sediments. In surficial sediments where densities of aerobic heterotrophs were low, the density of culturable FeRB correlated positively with the concentration of amorphous Fe(III) oxyhydroxides extractable by ascorbate. High FeRB densities and a decrease with depth of ascorbate-extractable Fe(III) were observed in the upper 6 cm of a tidal creek core. Culturable sulfate-reducing bacteria (SRB) and SRB-targeted rRNA signals were also detected in the upper 6-cm depth. The disappearance of FeRB below 6 cm, however, coincided with a large increase in the abundance of SRB. Thus, when FeRB are not limited by the availability of readily reducible amorphous Fe(III) oxyhydroxides, FeRB may outcompete SRB for growth substrates. Shewanella putrefaciens- and Geobacteraceae-targeted rRNA signals were at or below detection limits in all sediment samples, indicating that these FeRB are not predominant members of the active FeRB populations. The ubiquitous presence of FeRB at the sites studied challenges the traditional view that dissimilatory Fe(III) reduction is not an important pathway of organic carbon oxidation in salt marsh sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号