首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular dynamics at 300 K was used as a conformation searching tool to analyze a knowledge-based structure prediction of an anti-insulin antibody. Solvation effects were modeled by packing water molecules around the antigen binding loops. Some loops underwent backbone and side-chain conformational changes during the 95-ps equilibration, and most of these new, lower potential energy conformations were stable during the subsequent 200-ps simulation. Alterations to the model include changes in the intraloop, main-chain hydrogen bonding network of loop H3, and adjustments of Tyr and Lys side chains of H3 induced by hydrogen bonding to water molecules. The structures observed during molecular dynamics support the conclusion of the previous paper that hydrogen bonding will play the dominant role in antibody-insulin recognition. Determination of the structure of the antibody by x-ray crystallography is currently being pursued to provide an experimental test of these results. The simulation appears to improve the model, but longer simulations at higher temperatures should be performed.  相似文献   

2.
Abstract

Cyclodextrins (CD's) have proved useful as model systems for the study of hydrogen bonding. They are torus-shaped molecules composed of six(α), seven (β) or eight(γ) (1?4) linked glucoses. Because of their particular geometry, they are able to act as a “host” to form inclusion complexes with “guest” molecules very much like enzymes. Cyclodextrins have been shown to exert catalytic activity on suitable included-substrate molecules; they catalyze the hydrolysis of phenylacetates, of organic pyrophosphates and of penicillin derivatives. They also accelerate aromatic chlorinations and diazo coupling by means of their primary and/or secondary hydroxyl groups, so that the rates of hydrolysis are enhanced by up to a factor of 400. In order to understand the hydrogen bonding in these enzyme models, neutron diffraction data were collected to unambiguously determine the hydrogen atom positions, which could not be done from the x-ray diffraction data. α-CD has been shown to have two different structures with well-defined hydrogen bonds, one “tense” and the other “relaxed”. An “induced-fit”-like mechanism for α-CD complex formation has been proposed. Circular hydrogen bond networks have also been found for α-CD due to the energetically favored cooperative effect. β-CD with a disordered water structure possesses an unusual flip-flop hydrogen bonding system of the type O-H…H-O representing an equilibrium between two states: O-H…O?O…O. γ-CD with a disordered water structure similar to β-CD also possesses the flip-flop hydrogen bond. This study demonstrates that hydrogen bonds are operative in disordered systems and display dynamics even in the solid state.  相似文献   

3.
4.
The paper describes molecular dynamics (MD) simulations on the crystal structures of the Iβ and II phases of cellulose. Structural proposals for each of these were made in the 1970s on the basis of X-ray diffraction data. However, due to the limited resolution of these data some controversies remained and details on hydrogen bonding could not be directly obtained. In contrast to structure factor amplitudes in X-ray diffraction, energies, as obtained from MD simulations, are very sensitive to the positions of the hydroxyl hydrogen atoms. Therefore the latter technique is very suitable for obtaining such structural details. MD simulations of the Iβ phase clearly shows preference for one of the two possible models in which the chains are packed in a parallel orientation. Only the parallel-down mode (in the definition of Gardner and Blackwell (1974) J Biopolym 13: 1975-2001) presents a stable structure. The hydrogen bonding consists of two intramolecular hydrogen bonds parallel to the glycosidic linkage for both chains, and two intralayer hydrogen bonds. The layers are packed hydrophobically. All hydroxymethyl group are positioned in the tg conformation. For the cellulose II form it was found that, in contrast to what seemed to emerge from the X-ray fibre diffraction data, both independent chains had the gt conformation. This idea already existed because of elastic moduli calculations and 13C-solid state NMR data. Recently, the structure of cellotetraose was determined. There appear to be a striking similarity between the structure obtained from the MD simulations and this cellotetraose structure in terms of packing of the two independent molecules, the hydrogen bonding network and the conformations of the hydroxymethyl group, which were also gt for both molecules. The structure forms a 3D hydrogen bonded network, and the contribution from electrostatics to the packing is more pronounced than in case of the Iβ structure. In contrast to what is expected, in view of the irreversible transition of the cellulose I to II form, the energies of the Iβ form is found to be lower than that of II by 1 kcal mol-1 per cellobiose. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

5.
6.
The rapid translocation of H+ along a chain of hydrogen-bonded water molecules, or proton wire, is thought to be an important mechanism for proton permeation through transmembrane channels. Computer simulations are used to study the properties of the proton wire formed by the single-file waters in the gramicidin A channel. The model includes the polypeptidic dimer, with 22 water molecules and one excess proton. The dissociation of the water molecules is taken into account by the "polarization model" of Stillinger and co-workers. The importance of quantum effects due to the light mass of the hydrogen nuclei is examined with the use of discretized Feynman path integral molecular dynamics simulations. Results show that the presence of an excess proton in the pore orients the single-file water molecules and affects the geometry of water-water hydrogen bonding interactions. Rather than a well-defined hydronium ion OH3+ in the single-file region, the protonated species is characterized by a strong hydrogen bond resembling that of O2H5+. The quantum dispersion of protons has a small but significant effect on the equilibrium structure of the hydrogen-bonded water chain. During classical trajectories, proton transfer between consecutive water molecules is a very fast spontaneous process that takes place in the subpicosecond time scale. The translocation along extended regions of the chain takes place neither via a totally concerted mechanism in which the donor-acceptor pattern would flip over the entire chain in a single step, nor via a succession of incoherent hops between well-defined intermediates. Rather, proton transfer in the wire is a semicollective process that results from the subtle interplay of rapid hydrogen-bond length fluctuations along the water chain. These rapid structural fluctuations of the protonated single file of waters around an average position and the slow movements of the average position of the excess proton along the channel axis occur on two very different time scales. Ultimately, it is the slow reorganization of hydrogen bonds between single-file water molecules and channel backbone carbonyl groups that, by affecting the connectivity and the dynamics of the single-file water chain, also limits the translocation of the proton across the pore.  相似文献   

7.
The dependence of the conformation of cyclosporin A (CPA), a cyclic undecapeptide with potent immunosuppressive activity, on the type of solvent environment is examined using the computer simulation method of molecular dynamics (MD). Conformational and dynamic properties of CPA in aqueous solution are obtained from MD simulations of a CPA molecule dissolved in a box with water molecules. Corresponding properties of CPA in apolar solution are obtained from MD simulations of CPA in a box with carbontetrachloride. The results of these simulations in H2O and in CCl4 are compared to each other and to those of previous simulations of crystalline CPA and of an isolated CPA molecule. The conformation of the backbone of the cyclic polypeptide is basically independent of the type of solvent. In aqueous solution the beta-pleated sheet is slightly weaker and the gamma-turn is a bit less pronounced than in apolar solution. Side chains may adopt different conformations in different solvents. In apolar solution the hydrophobic side chain of the MeBmt residue is in an extended conformation with its hydroxyl group hydrogen bonded to the backbone carbonyl group. In aqueous solution this hydrophobic side chain folds over the core of the molecule and the mentioned hydrogen bond is broken in favor of hydrogen bonding to water molecules. The conformation obtained from the MD simulation in CCl4 nicely agrees with experimental atom-atom distance data as obtained from nmr experiments in chloroform. In aqueous solution the relaxation of atomic motion tends to be slower than in apolar solution.  相似文献   

8.
Abstract

We discuss some of the problems that have frustrated the development of reliable model intermolecular potentials for polyatomic molecules. In particular, the usual assumption of an isotropic atom-atom model potential is analysed, and evidence for its inadequacies is presented. A new approach to designing model potentials, an anisotropic site—site model, is introduced by describing several applications to both small and organic molecules, including molecular dynamics and Monte Carlo simulations. The anisotropy required in an atom—atom potential can be directly linked to the non-spherical features in the valence electron distribution, such as lone pairs and π electrons. An accurate electrostatic model for these effects can be constructed from a distributed multipole analysis of the ab initio wavefunction. The empirically required forms of anisotropy in the repulsion potential can also be qualitatively linked to the molecular electron density difference map. Thus, consideration of the molecular bonding can be a useful indication of how to construct adequate model intermolecular pair potentials.  相似文献   

9.
Trobro S  Aqvist J 《Biochemistry》2006,45(23):7049-7056
The reaction mechanism of peptide bond formation on the ribosome is now becoming established by results from both experiments and computer simulations. Here, we analyze predictions from molecular dynamics simulations, as well as from new crystal structures, and examine their implications for the mechanisms of peptidyl transfer and peptidyl-tRNA hydrolysis. A number of computational predictions for the peptidyl transfer reaction, including quantitative energetics, stereochemistry, hydrogen bonding network, and role of solvent molecules, are found to be supported and confirmed by kinetic and structural data. The results show that this type of reaction calculations can provide important links between structure and function that cannot be obtained by experimental means.  相似文献   

10.
In this work, we present temperature dependence of lattice parameter and normalised lattice parameter in the atmospheric pressure and 120 bar and also pressure dependence of unit cell volume and normalised unit cell volume at 150 and 250?K for variety guests with different size, polarity and guest–host hydrogen bonding capability such as trimethylene oxide (TMO), ethylene oxide (EO), formaldehyde (FA), cyclobutane (CB), cyclopropane (CP) and ethane (Et) in the large cages with CH4 in small cages of sI clathrate hydrates by molecular dynamics simulations. The obtained values of lattice parameters for the guest species are compatible with the experimental values. These clathrate hydrates are simulated with TIP4P/ice four-site water potential. Herein, isobaric thermal expansivity and isothermal compressibility are calculated at a temperature range of 50–250?K and a wide pressure range. These structural properties have been compared for guests which they are isoelectronic and have similar masses but with different size and polarity. We use molecular dynamics simulations to relate microscopic guest properties, like guest–host hydrogen bonding to macroscopic sI clathrate hydrate properties. The temperature dependence of thermodynamic properties such as constant-volume and constant-pressure heat capacity is presented in the atmospheric pressure for these guest species.  相似文献   

11.
Molecular solutes are known to have a strong effect on the structural and dynamical properties of the surrounding water. In our recent study (PNAS, 114, 322 (2017)) we have identified the presence of strengthened water hydrogen bonds near hydrophobic solutes by using both IR spectroscopy and ab-initio molecular dynamics simulations. The water molecules involved in the enhanced hydrogen bonding have been shown to display extensive structural ordering and restricted mobility. We observed that an individual pair of water molecules can make stronger hydrogen bond to each other if it is not surrounded by intercalating water molecules. Here we present compelling simulation results which unravel a simple mechanistic picture of the emergence of the hydrogen bond (HB) strengthening around solvated methane. We show explicitly that actual absence of water molecules within the excluded volume due to the hydrophobic molecule assures smaller residual torque on neighboring water molecules enabling the formation of stronger HBs between them.  相似文献   

12.
Wei G  Mousseau N  Derreumaux P 《Proteins》2004,56(3):464-474
The determination of the folding mechanisms of proteins is critical to understand the topological change that can propagate Alzheimer and Creutzfeld-Jakobs diseases, among others. The computational community has paid considerable attention to this problem; however, the associated time scale, typically on the order of milliseconds or more, represents a formidable challenge. Ab initio protein folding from long molecular dynamics simulations or ensemble dynamics is not feasible with ordinary computing facilities and new techniques must be introduced. Here we present a detailed study of the folding of a 16-residue beta-hairpin, described by a generic energy model and using the activation-relaxation technique. From a total of 90 trajectories at 300 K, three folding pathways emerge. All involve a simultaneous optimization of the complete hydrophobic and hydrogen bonding interactions. The first two pathways follow closely those observed by previous theoretical studies (folding starting at the turn or by interactions between the termini). The third pathway, never observed by previous all-atom folding, unfolding, and equilibrium simulations, can be described as a reptation move of one strand of the beta-sheet with respect to the other. This reptation move indicates that non-native interactions can play a dominant role in the folding of secondary structures. Furthermore, such a mechanism mediated by non-native hydrogen bonds is not available for study by unfolding and Gō model simulations. The exact folding path followed by a given beta-hairpin is likely to be influenced by its sequence and the solvent conditions. Taken together, these results point to a more complex folding picture than expected for a simple beta-hairpin.  相似文献   

13.
Klein TE  Huang CC 《Biopolymers》1999,49(2):167-183
The results of 0.5-1.0 ns molecular dynamics simulations of the collagen-like peptides [(POG)4(POA)(POG)4]3 and [(POG)9]3 (POG: proline-hydroxyproline-glycine) are presented. All simulations were performed using the AMBER-94 molecular mechanical force field with a shell of TIP3P waters surrounding the peptides. The initial geometries for the collagen-like peptides included an x-ray crystallographic structure, a computer-generated structure, a [(POG)9]3 structure modeled from the x-ray structure, and the x-ray structure with crystallographic waters replaced with a shell of modeled TIP3P waters. We examined the molecular dynamics peptide residue rms deviation fluctuations, dihedral angles, molecular and chain end-to-end distances, helical parameters, and peptide-peptide and peptide-solvent hydrogen-bonding patterns. Our molecular dynamics simulations of [(POG)4(POA)(POG)4]3 show average structures and internal coordinates similar to the x-ray crystallographic structure. Our results demonstrate that molecular dynamics can be used to reproduce the experimental structures of collagen-like peptides. We have demonstrated the feasibility of using the AMBER-94 molecular mechanical force field, which was parameterized to model nucleic acids and globular proteins, for fibril proteins. We provide a new interpretation of peptide-solvent hydrogen bonding and a peptide-peptide hydrogen bonding pattern not previously reported in x-ray studies. Last, we report on the differences; in particular with respect to main-chain dihedral angles and hydrogen bonding, between the native and mutant collagen-like peptides.  相似文献   

14.
Conformational studies have been performed of a pentasaccharide derived from the O-polysaccharide from Escherichia coli O142. The polymer was selectively degraded by anhydrous hydrogen fluoride and reduced to yield an oligosaccharide model of its repeating unit, which in the branching region consists of four aminosugars. A comparison of (1)H and (13)C chemical shifts between the pentasaccharide and the polymer showed only minor differences, except where the cleavage had taken place, indicating that the oligomer is a good model of the repeating unit. Langevin dynamics and molecular dynamics simulations with explicit water molecules were carried out to sample the conformational space of the pentasaccharide. For the glycosidic linkages between the hexopyranoside residues, small but significant changes were observed between the simulation techniques. One-dimensional (1D) (1)H,(1)H double pulsed field gradient spin echo (DPFGSE) transverse rotating-frame Overhauser effect spectroscopy (T-ROESY) experiments were performed, and homonuclear cross-relaxation rates were obtained. Subsequently, a comparison of interproton distances from NMR experiment and the two simulation approaches showed that in all cases the use of explicit water in the simulations resulted in better agreement. Hydrogen-bond analysis of the trajectories from the molecular dynamics simulation revealed interresidue interactions to be important as a cluster of different hydrogen bonds and as a distinct highly populated hydrogen bond. NMR data are consistent with the presence of hydrogen bonding within the model of the repeating unit.  相似文献   

15.
Abstract Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G(7)) quadruplex structures with Na(+) or K(+) ions coordinated in the cavity formed by the O6 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 ? from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na(+) counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, O6 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na(+) ions, within the quadruplex cavity, are more mobile than coordinated K(+) ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.  相似文献   

16.
Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G7) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the 06 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 A from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na+ counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, 06 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.  相似文献   

17.
Molecular dynamics simulations of the adsorption of hydrogen molecules in finite single-walled carbon nanotube bundles are presented using a curvature dependent force field. The heat of formation and the effective adsorption capacity are expressed as a function of H2 distance from adsorbent. The heat of adsorption decreases rapidly with the distance and increasing H2 loading results in weakening adsorption strength. The effects of nanotube packing and bundle thickness on hydrogen adsorption strength were investigated and the results show that the heat of adsorption can be improved slightly if hydrogen molecules are placed in thicker and inhomogeneously packed nanotube bundles. Only very small diameter nanotube bundles were found to hold promise for significant hydrogen storage for onboard applications.  相似文献   

18.
Contrary to the widespread view that hydrogen bonding and its entropy effect play a dominant role in protein folding, folding into helical and hairpin-like structures is observed in molecular dynamics (MD) simulations without hydrogen bonding in the peptide-solvent system. In the widely used point charge model, hydrogen bonding is calculated as part of the interaction between atomic partial charges. It is removed from these simulations by setting atomic charges of the peptide and water to zero. Because of the structural difference between the peptide and water, van der Waals (VDW) interactions favor peptide intramolecular interactions and are a major contributing factor to the structural compactness. These compact structures are amino acid sequence dependent and closely resemble standard secondary structures, as a consequence of VDW interactions and covalent bonding constraints. Hydrogen bonding is a short range interaction and it locks the approximate structure into the specific secondary structure when it is included in the simulation. In contrast to standard molecular simulations where the total energy is dominated by charge-charge interactions, these simulation results will give us a new view of the folding mechanism.  相似文献   

19.
The ionization properties of Lys and Glu residues buried in the hydrophobic core of staphylococcal nuclease (SN) suggest that the interior of this protein behaves as a highly polarizable medium with an apparent dielectric constant near 10. This has been rationalized previously in terms of localized conformational relaxation concomitant with the ionization of the internal residue, and with contributions by internal water molecules. Paradoxically, the crystal structure of the SN V66E variant shows internal water molecules and the structure of the V66K variant does not. To assess the structural and dynamical character of interior water molecules in SN, a series of 10-ns-long molecular dynamics (MD) simulations was performed with wild-type SN, and with the V66E and V66K variants with Glu66 and Lys66 in the neutral form. Internal water molecules were identified based on their coordination state and characterized in terms of their residence times, average location, dipole moment fluctuations, hydrogen bonding interactions, and interaction energies. The locations of the water molecules that have residence times of several nanoseconds and display small mean-square displacements agree well with the locations of crystallographically observed water molecules. Additional, relatively disordered water molecules that are not observed crystallographically were found in internal hydrophobic locations. All of the interior water molecules that were analyzed in detail displayed a distribution of interaction energies with higher mean value and narrower width than a bulk water molecule. This underscores the importance of protein dynamics for hydration of the protein interior. Further analysis of the MD trajectories revealed that the fluctuations in the protein structure (especially the loop elements) can strongly influence protein hydration by changing the patterns or strengths of hydrogen bonding interactions between water molecules and the protein. To investigate the dynamical response of the protein to burial of charged groups in the protein interior, MD simulations were performed with Glu66 and Lys66 in the charged state. Overall, the MD simulations suggest that a conformational change rather than internal water molecules is the dominant determinant of the high apparent polarizability of the protein interior.  相似文献   

20.
Sphingomyelin, one of the main lipid components of biological membranes, is actively involved in various cellular processes such as protein trafficking and signal transduction. In particular, specific lateral domains enriched in sphingomyelin and cholesterol have been proposed to play an important functional role in biomembranes, although their precise characteristics have remained unclear. A thorough understanding of the functional role of membranes requires detailed knowledge of their individual lipid components. Here, we employ molecular dynamics simulations to conduct a systematic comparison of a palmitoylsphingomyelin (PSM, 16:0-SM) bilayer with a membrane that comprises dipalmitoylphosphatidylcholine (DPPC) above the main phase transition temperature. We clarify atomic-scale properties that are specific to sphingomyelin due to its sphingosine moiety, and further discuss their implications for SM-rich membranes. We find that PSM bilayers, and in particular the dynamics of PSM systems, are distinctly different from those of a DPPC bilayer. When compared with DPPC, the strong hydrogen bonding properties characteristic to PSM are observed to lead to considerable structural changes in the polar headgroup and interface regions. The strong ordering of PSM acyl chains and specific ordering effects in the vicinity of a PSM-water interface reflect this issue clearly. The sphingosine moiety and related hydrogen bonding further play a crucial role in the dynamics of PSM bilayers, as most dynamic properties, such as lateral and rotational diffusion, are strongly suppressed. This is most evident in the rotational motion characterized by spin-lattice relaxation times and the decay of hydrogen bond autocorrelation functions that are expected to be important in complexation of SM with other lipids in many-component bilayers. A thorough understanding of SM bilayers would greatly benefit from nuclear magnetic resonance experiments for acyl chain ordering and dynamics, allowing full comparison of these simulations to experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号