首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work describes the use of low-voltage (0.5 - 5 V) pulsed electric fields to prevent Pseudomonas aeruginosa biofilm development. Interdigitated electrodes (IDEs) with 29-mum spacing between 22-mum-wide electrodes, were used as a platform where the effect of localised, high-strength electric fields could be tested. Alternating current, square-wave pulses were applied to the IDEs in 1 sec intervals. A two-level, three-variable factorial design experiment was used to detect the effects of applied voltage, frequency, and pulse duty ratio (i.e. percentage of pulsing time over one cycle) on the inhibition of biofilm formation. The observations indicated that a pulse configuration of 1% duty ratio, 5 V, and 200 Hz frequency reduced the area of the electrodes covered by biofilm by 50%. In general, the application of low-duty ratio pulses had a positive effect on preventing biofouling. Comparatively, frequency and applied voltage were observed to have less influence on biofouling.  相似文献   

2.
Rhamnolipids were evaluated as biofouling reducing agents in this study. The permeability of the bacterial outer membrane was increased by rhamnolipids while the growth rate of Pseudomonas aeruginosa was not affected. The surface hydrophobicity was increased through the release of lipopolysaccharides and extracellular polymeric substances from the outer cell membrane. Rhamnolipids were evaluated as agents for the prevention and cleaning of biofilms. A high degree of biofilm detachment was observed when the rhamnolipids were used as a cleaning agent. In addition, effective biofilm reduction occurred when rhamnolipids were applied to various species of Gram-negative bacteria isolated from seawater samples. Biofilm reduction using rhamnolipids was comparable to commercially available surfactants. In addition, 20% of the water flux was increased after rhamnolipid treatment (300 μg ml?1, 6 h exposure time) in a dead-end filtration system. Rhamnolipids appear to have promise as biological agents for reducing membrane biofouling.  相似文献   

3.
During standard electrochemotherapy (ECT), using a train of 1,000 V/cm amplitude rectangular pulses with 1 Hz frequency, patients experience an unpleasant sensation and slight edema. According to the patients, muscle contractions provoked by high amplitude (about 1,000 V/cm) and low repetition frequency (1 Hz) pulses are the most unpleasant and painful sensations. Recently, ECT using low voltage and higher repetition frequency (LVHF) has been shown to be an effective tool for inhibiting tumor growth. The aim of the present study was to optimize electric pulse amplitude and repetition frequency for LVHF ECT by sampling the different sets of pulse parameters on cell viability and permeabilization. In ECT, a reversible effect based on high permeabilization is desirable. For this purpose, we used bleomycin to evaluate the permeabilization of K562 and MIA-PACA2 cells caused by low voltage (50–150 V/cm) and higher repetition frequency (4–6 kHz) electric pulses. We show that the reversible effect with electropermeabilization of the cells caused by LVHF ECT is accessible; this interaction is more effective for electric pulses with 70 V/cm amplitude.  相似文献   

4.
The role of reactive oxygen species (ROS) in electrochemical biofouling inhibition was investigated using a series of abiotic tests and settlement experiments with larvae of the barnacle Amphibalanus amphitrite, a cosmopolitan fouler. Larval settlement, a measure of biofouling potential, was reduced from 43% ± 14% to 5% ± 6% upon the application of pulsed electric signals. The application of ROS scavengers such as glutathione and catalase counteracted the inhibitory effects of the electric signals, allowing settlement, and thus indicating that ROS are antifouling agents. Based on the experimental evidence, the proposed mechanism for ROS-based fouling prevention with interdigitated electrodes involved the electrochemical generation of hydrogen peroxide by oxygen reduction, and its likely reduction to hydroxyl radicals. Either hydroxyl radicals or products of hydroxyl radical reactions appeared to be the main deterrents of larval settlement.  相似文献   

5.
Electrokinetic remediation (EKR) processes are energy intense systems as they are mainly run under continuous constant current supply mode. In this study, pulsed electrokinetic remediation (PEKR) technique was employed for the removal of Cd, Hg and Cr from mixed contaminated natural clay and bentonite soils. The effects of voltage gradient, pulse duty cycle and bentonite/clay ratio on the simultaneous removal efficiencies of the heavy metals and specific energy consumption were investigated. Fifteen (15) PEKR experiments were conducted according to Box–Behnken design (BBD) with each experiment allowed to continuously run for 21 days. Increase in the proportion of the bentonite significantly decreased the removal efficiency of the heavy metals while having insignificant effect on the energy consumption. Conversely, increase in both voltage gradient and pulse duty cycle increased the heavy metals removal efficiencies, though at the expense of increase in energy consumption due to combine effects of increase in the soil electrical conductivity, amount of current needed to sustain the applied voltage gradient as well as the raise in the soil pH. The maximum achievable removal efficiencies for Cd, Hg and Cr were 21.87, 78.06 and 89.64% respectively. The specific energy consumption significantly increased from the range of 91.67–154.17 kwh/m3 to 1700–2441.67 kwh/m3 as a result of combined effect of increasing voltage gradient and pulse duty cycle. This demonstrated that effective PEKR could be achieved with significance reduction in the energy consumption via appropriate selection of pulse duty and voltage gradient for clay soils of different proportion of montmorillonite.  相似文献   

6.
Pulsed electric fields with microsecond pulse width (μsPEFs) are used clinically; namely, irreversible electroporation/Nanoknife is used for soft tissue tumor ablation. The μsPEF pulse parameters used in irreversible electroporation (0.5–1 kV/cm, 80–100 pulses, ~100 μs each, 1 Hz frequency) may cause an internal field to develop within the cell because of the disruption of the outer cell membrane and subsequent penetration of the electric field. An internal field may disrupt voltage-sensitive mitochondria, although the research literature has been relatively unclear regarding whether such disruptions occur with μsPEFs. This investigation reports the influence of clinically used μsPEF parameters on mitochondrial respiration in live cells. Using a high-throughput Agilent Seahorse machine, it was observed that μsPEF exposure comprising 80 pulses with amplitudes of 600 or 700 V/cm did not alter mitochondrial respiration in 4T1 cells measured after overnight postexposure recovery. To record alterations in mitochondrial function immediately after μsPEF exposure, high-resolution respirometry was used to measure the electron transport chain state via responses to glutamate-malate and ADP and mitochondrial membrane potential via response to carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. In addition to measuring immediate mitochondrial responses to μsPEF exposure, measurements were also made on cells permeabilized using digitonin and those with compromised cytoskeleton due to actin depolymerization via treatment with the drug latrunculin B. The former treatment was used as a control to tease out the effects of plasma membrane permeabilization, whereas the latter was used to investigate indirect effects on the mitochondria that may occur if μsPEFs impact the cytoskeleton on which the mitochondria are anchored. Based on the results, it was concluded that within the pulse parameters tested, μsPEFs alone do not hinder mitochondrial physiology but can be used to impact the mitochondria upon compromising the actin. Mitochondrial susceptibility to μsPEF after actin depolymerization provides, to our knowledge, a novel avenue for cancer therapeutics.  相似文献   

7.
Physical cleaning and/or chemical cleaning have been generally used to control biofouling in the reverse osmosis (RO) process. However, conventional membrane cleaning methods to control biofouling are limited due to the generation of by-products and the potential for damage to the RO membranes. In this study, supercritical carbon dioxide (SC CO2) treatment, an environmentally friendly technique, was introduced to control biofouling in the RO process. SC CO2 (100 bar at 35°C) treatment was performed after biofouling was induced on a commercial RO membrane using Pseudomonas aeruginosa PA01 GFP as a model bacterial strain. P. aeruginosa PA01 GFP biofilm cells were reduced on the RO membrane by >8 log within 30 min, and the permeate flux was sufficiently recovered in a laboratory-scale RO membrane system without any significant damage to the RO membrane. These results suggest that SC CO2 treatment is a promising alternative membrane cleaning technique for biofouling in the RO process.  相似文献   

8.
Neuromodulation applications of nanosecond electric pulses (nsEP) are hindered by their low potency to elicit action potentials in neurons. Excitation by a single nsEP requires a strong electric field which injures neurons by electroporation. We bypassed the high electric field requirement by replacing single nsEP stimuli with high-frequency brief nsEP bursts. In hippocampal neurons, excitation thresholds progressively decreased at nsEP frequencies above 20–200 kHz, with up to 20–30-fold reduction at sub-MHz and MHz rates. For a fixed burst duration, thresholds were determined by the duty cycle, irrespective of the specific nsEP duration, rate, or number of pulses per burst. For 100-μs bursts of 100-, 400-, or 800-ns pulses, the threshold decreased as a power function when the duty cycle exceeded 3–5 %. nsEP bursts were compared with single “long” pulses whose duration and amplitude matched the duration and the time-average amplitude of the burst. Such pulses deliver the same electric charge as bursts, within the same time interval. High-frequency nsEP bursts excited neurons at the time-average electric field 2–3 times below the threshold for a single long pulse. For example, the excitation threshold of 139 ± 14 V/cm for a single 100-μs pulse decreased to 57 ± 8 V/cm for a 100-μs burst of 100-ns, 0.25-MHz pulses (p < 0.001). Applying nsEP in bursts reduced or prevented the loss of excitability in multiple stimulation attempts. Stimulation by high-frequency nsEP bursts is a powerful novel approach to excite neurons at paradoxically low electric charge while also avoiding the electroporative membrane damage.  相似文献   

9.
The aim of this work was to study the effect of a high voltage pulsed electric field (PEF) on the inactivation of E. coli in cranberry juice to achieve the regulatory requirement of a 5‐log reduction in the microbial count. PEF processing involved the application of high voltage pulses to liquid or semi‐solid materials, placed between two electrodes at ambient, sub‐ambient, or supra‐ambient temperature. In this work, cranberry juice, inoculated with E. coli was subjected to 60 pulses in the voltage range of 5 to 40 kV/cm. The experiments were carried out at 20 °C. The temperature rise was less than 2 °C at the average treatment time of 80 s. PEF is an emerging non‐thermal technology for food preservation that retains the natural taste of food. It has mainly been applied to improve the shelf life of such foods as milk, liquid eggs and fruit juices.  相似文献   

10.
S Lin-Liu  W R Adey    M M Poo 《Biophysical journal》1984,45(6):1211-1217
Concanavalin A (con A) receptors on the surface of cultured Xenopus myoblasts redistributed in response to monopolar, pulsed electric fields. The prefield uniform distribution of the receptors became asymmetrical, and was polarized toward the cathodal pole, in the same way as in DC fields. The extent of asymmetry depended on the duration of field exposure, pulse width (or alternatively, interpulse interval), frequency, and intensity. This relationship was most conveniently expressed by using duty cycle, a quantity determined by both pulse width and frequency. Pulses of average intensity 1.5 V/cm induced detectable asymmetry within 5 min. At the lowest average field intensity used, 0.8 V/cm, significant asymmetry was detected at 150 min. For pulses of high duty cycle (greater than 25%), steady state was reached after 30 min exposure and the steady state asymmetry was dependent on average field intensity. For low duty cycle fields, the time required to reach steady state was prolonged (greater than 50 min). Before reaching a steady state, effectiveness of the pulses, as compared with DC fields of equivalent intensity, was a function of duty cycle. A low duty cycle field (fixed number of pulses at low frequency or long interpulse interval) was less effective than high duty cycle fields or DC.  相似文献   

11.
12.
UV light irradiation is being increasingly applied as a primary process for water disinfection, effectively used for inactivation of suspended (planktonic) cells. In this study, the use of UV irradiation was evaluated as a pretreatment strategy to control biofouling. The objective of this research was to elucidate the relative effectiveness of various targeted UV wavelengths and a polychromatic spectrum on bacterial inactivation and biofilm control. In a model system using Pseudomonas aeruginosa, the inactivation spectra corresponded to the DNA absorption spectra for all wavelengths between 220 and 280 nm, while wavelengths between 254 nm and 270 nm were the most effective for bacterial inactivation. Similar wavelengths of 254-260-270 nm were also more effective for biofilm control in most cases than targeted 239 and 280 nm. In addition, the prevention of biofilm formation by P. aeruginosa with a full polychromatic lamp was UV dose-dependent. It appears that biofilm control is improved when larger UV doses are given, while higher levels of inactivation are obtained when using a full polychromatic MP lamp. However, no significant differences were found between biofilms produced by bacteria that survived UV irradiation and biofilms produced by control bacteria at the same microbial counts. Moreover, the experiments showed that biofilm prevention depends on the post-treatment incubation time and nutrient availability, in addition to targeted wavelengths, UV spectrum and UV dose.  相似文献   

13.
The production, distribution and use of electricity can generate low frequency electric and magnetic fields (50–60 Hz). Considering that some studies showed adverse effects on pancreatic β-cells exposed to these fields; the present study aimed to analyze the effects of 60 Hz electric fields on membrane potential during the silent and burst phases in pancreatic β-cells using a mathematical model. Sinusoidal 60 Hz electric fields with amplitude ranging from 0.5 to 4 mV were applied on pancreatic β-cells model. The sinusoidal electric field changed burst duration, inter-burst intervals (silent phase) and spike sizes. The parameters above presented dose-dependent response with the voltage amplitude applied. In conclusion, theoretical analyses showed that a 60 Hz electric field with low amplitudes changes the membrane potential in pancreatic β-cells.  相似文献   

14.
Animals of the amphipod Orchestia montagui are kept in constant darkness with two short light pulses. One pulse is applied at the beginning of subjective night (around the dusk) and the other one at the end of subjective night (around the dawn). The pulse duration is estimated in the order of one or two hours around the dusk as well as the dawn. The locomotor activity rhythm was monitored in individual animals in summer under constant temperature. Results revealed that whatever the experimental conditions, under continuous or interrupted darkness by pulses, two endogenous components have been highlighted. In fact, Periodogram analysis showed the presence of ultradian and circadian periods around 12 and 24 h, respectively. The shortest circadian period and the most important inter-individual variability was observed under pulse of 2 h around the dusk with mean value equal to τDD+pulse = 24h38′ ± 4h34′. The activity profiles are in majority unimodal. Moreover, the most activity peak showed a slipping of its location from the middle of subjective night under constant darkness to the middle of subjective day under pulse. Globally, the locomotor activity rhythm of O. montagui was better defined under pulses and specimens were significantly more active under continuous darkness. Moreover, a great variability around the activity time was observed especially with pulse of 1 h.  相似文献   

15.
Xiuli Dong 《Biofouling》2014,30(10):1165-1174
This study reports the inhibitory effect of single walled carbon nanotubes (SWCNTs) on biofilm formation from Bacillus anthracis spores. Although the presence of 50 to 100 μg ml?1 of SWCNTs in the suspension increased spore attachment in the wells of 96-well plates, the presence of 200 μg ml?1 of SWCNTs in the germination solution decreased the germination percentage of the attached spores by 93.14%, completely inhibiting subsequent biofilm formation. The inhibition kinetics of 50 μg ml?1 SWCNTs on biofilm formation showed that this concentration inhibited biofilm formation by 81.2% after incubation for 48 h. SWCNT treatment in the earlier stages of biofilm formation was more effective compared to treatment at later stages. Mature biofilms were highly resistant to SWCNT treatment.  相似文献   

16.
The effect of electric field (EF) in a newly designed molecular nanowire 9,10-dimethoxy-2,6-bis(2-p-tolylethynyl)anthracene has been analysed theoretically from the structural and electronic charge transport properties using quantum chemical and charge density calculations. The applied EF (0–0.36 VÅ? 1) alters the molecular conformation, charge density distribution, electrostatic properties and the electronic energy levels of the molecule. Furthermore, the applied EF decreases the highest occupied molecular orbital–lowest unoccupied molecular orbital gap significantly from 1.775 to 0.258 eV and it also induces polarisation in the molecule, which leads to increase the dipole moment of the molecule. The electrostatic potential for various levels of applied EF reveals the charge-accumulated regions of the molecule. The IV characteristics of the molecule have been studied against various applied fields using Landauer formalism.  相似文献   

17.
The present study aimed to investigate the possible effect of pulse-modulated radiofrequency radiation (RFR) on rat skin hydroxyproline content, since skin is the first target of external electromagnetic fields. Skin hydroxyproline content was measured using liquid chromatography mass spectrometer method. Two months old male wistar rats were exposed to a 900 MHz pulse-modulated RFR at an average whole body specific absorption rate (SAR) of 1.35 W/kg for 20 min/day for 3 weeks. The radiofrequency (RF) signals were pulse modulated by rectangular pulses with a repetition frequency of 217 Hz and a duty cycle of 1:8 (pulse width 0.576 ms). A skin biopsy was taken at the upper part of the abdominal costa after the exposure. The data indicated that whole body exposure to a pulse-modulated RF radiation that is similar to that emitted by the global system for mobile communications (GSM) mobile phones caused a statistically significant increase in the skin hydroxyproline level (p = 0.049, Mann–Whitney U test). Under our experimental conditions, at a SAR less than the International Commission on Non-Ionizing Radiation Protection safety limit recommendation, there was evidence that GSM signals could alter hydroxyproline concentration in the rat skin.  相似文献   

18.
An important issue for an economic application of the pulsed electric field treatment for bacterial decontamination of wastewater is the specific treatment energy needed for effective reduction of bacterial populations. The present experimental study performed in a field amplitude range of 40 > E > 200 kV/cm and for a suspension conductivity of 0.01 = κ e > 0.2 S/m focusses on the application of short pulses, 25 ns > T > 10 μs, of rectangular, bipolar and exponential shape and was made on Pseudomonas putida, which is a typical and widespread wastewater microorganism. The comparison of inactivation results with calculations of the temporal and azimuthal membrane charging dynamics using the model of Pauly and Schwan revealed that for efficient inactivation, membrane segments at the cell equator have to be charged quickly and to a sufficiently high value, on the order of 0.5 V. After fulfilling this basic condition by an appropriate choice of pulse field strength and duration, the log rate of inactivation for a given suspension conductivity of 0.2 S/m was found to be independent of the duration of individual pulses for constant treatment energy expenditure. Moreover, experimental results suggest that even pulse shape plays a minor role in inactivation efficiency. The variation of the suspension conductivity resulted in comparable inactivation performance of identical pulse parameters if the product of pulse duration and number of pulses was the same, i.e., required treatment energy can be linearly downscaled for lower conductivities, provided that pulse amplitude and duration are selected for entire membrane surface permeabilization.  相似文献   

19.
Yeast biofilms contribute to quality impairment of industrial processes and also play an important role in clinical infections. Little is known about biofilm formation and their treatment. The aim of this study was to establish a multi-layer yeast biofilm model using a modified 3.7 l bench-top bioreactor operated in continuous mode (D = 0.12 h?1). The repeatability of biofilm formation was tested by comparing five bioprocesses with Rhodotorula mucilaginosa, a strain isolated from washing machines. The amount of biofilm formed after 6 days post inoculation was 83 μg cm?2 protein, 197 μg cm?2 polysaccharide and 6.9 × 106 CFU cm?2 on smooth polypropylene surfaces. Roughening the surface doubled the amount of biofilm but also increased its spatial variability. Plasma modification of polypropylene significantly reduced the hydrophobicity but did not enhance cell attachment. The biofilm formed on polypropylene coupons could be used for sanitation studies.  相似文献   

20.
The transient electric birefringence of low electroendosmosis (LE) agarose gels oriented by pulsed unidirectional electric fields was described in detail in Part I [J. Stellwagen and N. C. Stellwagen (1994), Biopolymers, Vol. 34, p. 187]. Here, the birefringence of LE agarose gels in rapidly reversing electric fields, similar in amplitude and duration to those used for field inversion gel electrophoresis, is reported. Symmetric reversing electric fields cause the sign of the birefringence of LE agarose gels, and hence the direction of orientation of the agarose fibers, to Oscillate in phase with the applied electric field. Because of long-lasting memory effects, the alternating sign of the birefringence appears to be due to metastable changes in gel structure induced by the electric field. If the reversing field pulses are equal in amplitude but different in duration, the orientation behavior depends critically on the applied voltage. If E < 7 V/cm, the amplitude of the birefringence gradually decreases with increasing pulse number and becomes unmeasurably small. However, if E > 7 V/cm, the amplitude of the birefringence increase more than 10-fold after ~ 20 pulses have been applied to the gel, suggesting that a cooperative change in gel structure has occurred. Because there is no concomitant change birefringence must be due to an increase in the number of agarose fibers and /or fiber bundles orienting in the lectric field, which in turn indicates a cooperatice breakdown of the noncovalent “junction zones” that corss-link the fibers in to the fgel matrix. The sign of the birefringence of LE agarose gels is always positive after extensive junction zone breakdown, indicating that the agarose fibers and fiber bundles preferentially orient parallel to the lectric field when they are freed from the constraints of the gel matrix. Three other gel-forming polymers, high electroendosmosis (HEEO) agarose (a more highly changed agarose), β-carrageenan (a stereoisomer of agarose), and polyacrylamide (a chemically corss-linked polymer) were alos studied in unidirectional and rapidly reversing electric fields. The birefringence of HEEO agarose backbone chain. The β-carrageenan gels exhibit variable orientation behavior in reversing electric fields, suggesting that its internal gel structure is not as tightly interconnected as that of agaroise gels. Both HEEO agarose and β-carrageenan gels exhibit a large increase in the amplitude of the birefringence with increasing pulse number when asymmetric reversing pulses > 7 V/cm are applied to the gels, suggesting that junction zone breakdown in a common feature of polysaccharide gels. Chemically cross-linked polyacrylamide gels exhibit very small birefringence signals, indicating that very little orientation occurs in pulsed lectric fields. The sign of the birefringence is independent of the polarity of the lectric field, as expected from the Kerr law, and normal orientation behavior is observed in reversing electric fields. Hence, the anomalous change in sign of the birefringence observed for agarose gels in reversing electric fields must be due to the metastable junction zones in the agarose gel matrix, which allow gel fiber rearrangements to occur. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号