首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

Pathogenic bacteria can spread between individuals or between food items via the surfaces they share. Limiting the survival of pathogens on surfaces, therefore, presents an opportunity to limit at least one route of how pathogens spread. In this study, we propose that a simple coating with the essential oil isoeugenol can be used to circumvent the problem of bacterial transfer via surfaces.

Methods and Results

Two commonly used materials, stainless steel and polyethylene, were coated by physical adsorption, and the coatings were characterized by Raman spectroscopy, atomic force microscopy and water contact angle measurements. We quantified and visualized the colonization of coated and uncoated surfaces by three bacteria: Staphylococcus aureus, Listeria monocytogenes and Pseudomonas fluorescens. No viable cells were detected on surfaces coated with isoeugenol.

Conclusions

The isoeugenol coating prepared with simple adsorption proved effective in preventing biofilm formation on stainless steel and polyethylene surfaces. The result was caused by the antibacterial effect of isoeugenol, as the coating did not diminish the adhesive properties of the surface.

Significance and Impact of the Study

Our study demonstrates that a simple isoeugenol coating can prevent biofilm formation of S. aureus, L. monocytogenes and P. fluorescens on two commonly used surfaces.  相似文献   

2.
Mild steel and stainless steel samples were assayed in laboratory experiments against two different microbial strains isolated from cutting-oil emulsions: one strain of Pseudomonas fluorescens and a sulphate-reducing bacterium. The relationship between the corrosive attack and the formation of bacterial biofilms was assessed in each case by using electrochemical experiments complemented with scanning electron microscopical observation of the samples.  相似文献   

3.
The aim of the present research was to study the biofilms developed in a Spanish nuclear power plant and their ability to entrap radionuclides. In order to carry this out, a bioreactor, which was then submerged in a spent nuclear fuel pool, was designed. To characterise the biofilm on two different metallic materials (stainless steel and titanium), standard culture microbiological methods and molecular biology tools, as well as epifluorescence and scanning electron microscopy were used. The bacterial composition of the biofilm belongs to several phylogenetic groups (α, β, and γ-Proteobacteria, Actinobacteridae, and Firmicutes). The radioactivity of the biofilms was measured by gamma-ray spectrometry. Biofilms were able to retain radionuclides from radioactive water, especially 60Co. The potential use of these biofilms in bioremediation of radioactive water is discussed.  相似文献   

4.
Summary The aim of this paper was to evaluate the possible enhancement of the biocidal efficacy of glutaraldehyde against Pseudomonas fluorescens biofilms by the application of an electric field. The behaviour of sessile cells and cells released by the biofilms was assed. Biofilms were formed on thin stainless steel coupons immersed in culture media inoculated with Pseudomonas fluorescens. Treatments using glutaraldehyde (TGA) and both glutaraldehyde and electric field application (TGAEF) were carried out with the samples with biofilms. TGA: samples with biofilms were immersed in glass cells containing a buffer solution with different glutaraldehyde concentrations in the 25–500 ppm range. TGAEF: samples with biofilms were immersed in an electrochemical cell containing glutaraldehyde solution where a direct electric current (4 × 10−4 A cm−2) was delivered to the chamber. The evolution of biofilms was observed through optical microscopy at real time. Results show that the electric field enhanced glutaraldehyde efficacy reducing the number of surviving cells in the range of one to four orders with respect to those with TGA treatment. The sensitivity of the cells to the treatments decreased in the following order: planktonic cells > cells released by the biofilm > sessile cells.  相似文献   

5.
Summary This communication reports the presence of polysaccharides in biofilms formed by pure and mixed cultures of Desulfovibrio desulfuricans and Pseudomonas fluorescens on mild and stainless steel surfaces. The results of colorimetric assays, indicating significant differences between the amounts of neutral sugars present in these biofilms, were supported by gas chromatographic (GC)-mass spectrophotometric and GC-flame ionisation detection analyses. Neutral sugars in biofilms grown on mild steel surfaces were identified and quantified, revealing glucose as a major carbohydrate followed by mannose and galactose in all types of biofilm. Extracellular polymeric substances (EPS) precipitated from bacterial cultures grown with and without steel surfaces were also analysed for their carbohydrate content. The influence of the surfaces present in the cultures on the amount and type of sugars released into the bulk phase was established. There was significantly more carbohydrate in EPS harvested from pure and mixed cultures of D. desulfuricans incubated mild and stainless steel coupons than in EPS obtained from coupon-free cultures. No significant difference in sugar quantities was observed in EPS precipitated from cultures of P. fluorescens grown under different conditions (absence or presence of steel surfaces). The main carbohydrates identified in all types of EPS samples were mannose, glucose and galactose in order of prevalence. Offprint requests to: I. B. Beech  相似文献   

6.
Collar rot disease of betelvine (Piper betle L.) caused by Sclerotium rolfsii is difficult to control by conventional means by use of chemicals; therefore, use of biocontrol agents is desirable. In the present study, 186 bacterial strains of different morphological types were screened for their biocontrol activity against S. rolfsii under in vitro conditions. Two strains, Pseudomonas fluorescens NBRI-N6 and P. fluorescens NBRI-N, were selected for further studies because of their ability to inhibit the mycelial growth of the pathogen significantly. Spontaneous rifampicin-resistant (Rifr) derivatives of P. fluorescens NBRI-N6 and P. fluorescens NBRI-N showing growth rate and membrane protein composition comparable to the wild type were selected to facilitate their monitoring in the rhizosphere. Field trials demonstrated that strain P. fluorescens NBRI-N6 was better than P. fluorescens NBRI-N in increasing the yield of betelvine significantly, whereas a consortium of the two strains controlled the disease more than either of the strains. The screening method should prove useful in identifying rhizosphere bacteria with the greatest potential for controlling diseases caused by phytopathogenic fungi. RID= ID= <E5>Correspondence to:</E5> C.S. Nautiyal; <E5>email:</E5> nautiyalnbri&commat;yahoo.com Received: 5 August 2002 / Accepted: 7 October 2002  相似文献   

7.
The aim of this study was to analyze the cleaning efficiency of polysaccharidases and proteolytic enzymes against biofilms of bacterial species found in food industry processing lines and to study enzyme effects on the composition of extracellular polymeric substances (EPS) and biofilm removal in a Clean-in-Place (CIP) procedure. The screening of 7 proteases and polysaccharidases for removal of biofilms of 16 bacterial species was first evaluated using a microtiter plate assay. The alkaline pH buffer removed more biofilm biomass as well as affecting a larger range of bacterial species. The two serine proteases and α-amylase were the most efficient enzymes. Proteolytic enzymes promoted biofilm removal of a larger range of bacterial species than polysaccharidases. Using three isolates derived from two bacterial species widely found in food processing lines (Pseudomonas fluorescens and the Bacillus cereus group), biofilms were developed on stainless steel slides and enzymatic solutions were used to remove the biofilms using CIP procedure. Serine proteases were more efficient in removing cells of Bacillus biofilms than polysaccharidases. However, polysaccharidases were more efficient in removing P. fluorescens biofilms than serine proteases. Solubilization of enzymes with a buffer containing surfactants, and dispersing and chelating agents enhanced the efficiency of polysaccharidases and proteases respectively in removing biofilms of Bacillus and P. fluorescens. A combination of enzymes targeting several components of EPS, surfactants, dispersing and chelating agents would be an efficient alternative to chemical cleaning agents.  相似文献   

8.
Navy vessels consist of various metal alloys and biofilm accumulation at the metal surface is thought to play a role in influencing metal deterioration. To develop better strategies to monitor and control metallic biofilms, it is necessary to resolve the bacterial composition within the biofilm. This study aimed to determine if differences in electrochemical current could influence the composition of dominant bacteria in a metallic biofilm, and if so, determine the level of resolution using metagenomic amplicon sequencing. Current was generated by creating galvanic couples between cathodes made from stainless steel and anodes made from carbon steel, aluminum, or copper nickel and exposing them in the Delaware Bay. Stainless steel cathodes (SSCs) coupled to aluminum or carbon steel generated a higher mean current (0.39 mA) than that coupled to copper nickel (0.17 mA). Following 3 months of exposure, the bacterial composition of biofilms collected from the SSCs was determined and compared. Dominant bacterial taxa from the two higher current SSCs were different from that of the low-current SSC as determined by DGGE and verified by Illumina DNA-seq analysis. These results demonstrate that electrochemical current could influence the composition of dominant bacteria in metallic biofilms and that amplicon sequencing is sufficient to complement current methods used to study metallic biofilms in marine environments.  相似文献   

9.
Accumulation of heavy metals by Pseudomonas fluorescens 4F39 was rapid and pH-dependent. The affinity series for bacterial accumulation of metal cations decreased in the order Ni>>Hg>U>>As>Cu>Cd>Co>Cr>Pb. Metal cations were grouped into those whose accumulation increased as the pH increased, with a maximum accumulation at the pH before precipitation (Ni, Cu, Pb, Cd, Co), and those whose maximum accumulation was not associated with precipitation (Cr, As, U, Hg). High Ni2+ accumulation was studied. Electron microscopy indicated that at pH 9, Ni2+ accumulated on the cell surface as needle and hexagon-like precipitates, whose crystalline structure was confirmed by electron diffraction analysis and corresponded to two different orientations of the nickel hydroxide crystals. Crystals on cells showed marked anisotropy by X-ray powder diffraction, which differentiated them from crystals observed in nickel solution at pH 10 and 11 and from commercial nickel hydroxide. Nickel biosorption by Pseudomonas fluorescens 4F39 was a microprecipitation consequence of an ion exchange. Journal of Industrial Microbiology & Biotechnology (2000) 24, 146–151. Received 22 June 1999/ Accepted in revised form 04 December 1999  相似文献   

10.

The development of an electrochemical detector to monitor the in situ formation of biofilms is described. The detector consisted of an electrochemical cell containing three electrodes, whose response to the application of a potential profile to the working electrode was sensitive to the amount of biofilm present on the surface. The electrochemical technique used was repetitive cyclic voltammetry. Differences between the response of the uncolonised electrode and after Pseudomonas fluorescens biofilms of different ages were grown on its surface were determined. The results show that cyclic voltammetry applied to platinum electrodes can be used to detect young biofilms. The development of the shape of the voltammogram as the potential is cycled may constitute a means of providing information on the coverage of the surface. Observation of the platinum electrodes before and after the electrochemical measurements showed that even after 30 min of recycling, most of the cells were still adhered to the surface, although some may have lost viability.  相似文献   

11.
ABSTRACT We estimated loss of butt-end leg bands on male wild turkeys (Meleagris gallapavo) captured in New York, Ohio, and Pennsylvania (USA) during December-March, 2006–2008. We used aluminum rivet leg bands as permanent marks to estimate loss of regular aluminum, enameled aluminum, anodized aluminum, and stainless steel butt-end leg bands placed below the spur. We used band loss information from 887 turkeys recovered between 31 days and 570 days after release ( = 202 days). Band loss was greater for turkeys banded as adults (>1 yr old) than juveniles and was greater for aluminum than stainless steel bands. We estimated band retention was 79–96%, depending on age at banding and type of band, for turkeys recovered 3 months after release. Band retention was <50% for all age classes and band types 15 months after banding. We concluded that use of butt-end leg bands on male wild turkeys is inappropriate for use in mark-recapture studies.  相似文献   

12.
Glutaraldehyde (GLUT) was evaluated for control of single and dual species biofilms of Bacillus cereus and Pseudomonas fluorescens on stainless steel surfaces using a chemostat system. The biofilms were characterized in terms of mass, cell density, total and matrix proteins and polysaccharides. The control action of GLUT was assessed in terms of inactivation and removal of biofilm. Post-biocide action was characterized 3, 7, 12, 24, 48 and 72 h after treatment. Tests with planktonic cells were also performed for comparison. The results demonstrated that in dual species biofilms the metabolic activity, cell density and the content of matrix proteins were higher than those of either single species. Planktonic B. cereus was more susceptible to GLUT than P. fluorescens. The biocide susceptibility of dual species planktonic cultures was an average of each single species. Planktonic cells were more susceptible to GLUT than their biofilm counterparts. Biofilm inactivation was similar for both of the single biofilms while dual biofilms were more resistant than single species biofilms. GLUT at 200 mg l?1 caused low biofilm removal (<10%). Analysis of the post-biocide treatment data revealed the ability of biofilms to recover their activity over time. However, 12 h after biocide application, sloughing events were detected for both single and dual species biofilms, but were more marked for those formed by P. fluorescens (removal >40% of the total biofilm). The overall results suggest that GLUT exerts significant antimicrobial activity against planktonic bacteria and a partial and reversible activity against B. cereus and P. fluorescens single and dual species biofilms. The biocide had low antifouling effects when analysed immediately after treatment. However, GLUT had significant long-term effects on biofilm removal, inducing significant sloughing events (recovery in terms of mass 72 h after treatment for single biofilms and 42 h later for dual biofilms). In general, dual species biofilms demonstrated higher resistance and resilience to GLUT exposure than either of the single species biofilms. P. fluorescens biofilms were more susceptible to the biocide than B. cereus biofilms.  相似文献   

13.
ABSTRACT Banding penguins is controversial because bands can alter the survival, reproduction, and behavior of marked individuals. The effects of bands are not consistent among band types and, although stainless steel is thought to be better than other materials, tests of the long‐term impact of bands on tag‐loss rates and the reproduction and survival of individuals are needed. We tested three types of external tags on Magellanic Penguins (Spheniscus magellanicus) to measure band effects and tag‐loss rates. In 1993, we double‐tagged 300 penguins with aluminum flipper bands, stainless‐steel flipper bands, or small (2 mm × 10 mm) metal tags attached to foot webbing. We searched for double‐tagged birds for 13 of 15 yrs (1994–2008). Aluminum bands deformed, caused feather wear, injured and killed some penguins, and were lost more often than stainless‐steel bands or web tags. During the first 2 yrs of our study, at least nine penguins lost one aluminum band (N= 71 penguins resighted), but no penguins lost a stainless‐steel band (N= 84) or a web tag (N= 88). During the next 13 yrs, five penguins lost one of their two web tags (N= 89), but none lost a stainless‐steel band (N= 84). Females laid eggs of similar size before they carried a band and in the year following tagging (P= 0.09). The type of tags a female carried did not significantly change egg size (P > 0.22). During the first breeding season after tagging, penguins with aluminum bands had lower reproductive success than penguins with stainless‐steel bands or web‐tags (P= 0.04). The annual survival of females with two stainless‐steel bands was lower (0.79) than that of males with two stainless‐steel bands or males and females with two web‐tags (0.87). Aluminum bands injured Magellanic Penguins, were lost at high rates, and should not be used. Double stainless‐steel bands had no apparent effects on adult male Magellanic Penguins, but reduced survival rates of adult females. A single stainless‐steel band would likely have less impact than two bands, and our results suggest that the impact of a single band would be difficult to measure.  相似文献   

14.
Abstract

Here, by creating different types of artificial barrier layer against bacterial attachment, anti-biofouling properties were endowed on three metallic surfaces – aluminum, stainless steel and titanium. To each metallic surface, a tailored chemical oxidation process was applied to grow scalable oxide structures with an additional appropriate coating, resulting in three different types of anti-biofouling barrier, a thin water film, an air layer and an oil layer. Fluorescence images of the attached bacteria showed that the water layer improved the anti-biofouling performance up to 8–12?h and the air layer up to 12–24?h, comparable with the lifetime of the air layer. In comparison, the oil layer exhibited the best anti-biofouling performance by suppressing the fouled area by < 10% up to 72?h regardless of the substratum type. The present work provides simple, low-cost, scalable strategies to enhance the anti-biofouling performance of industrially important metallic surfaces.

  相似文献   

15.
The remediation of heavy metal-contaminated soils has become a critical issue due to toxic effects of these metals on living organisms. The current research was conducted to study the effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the growth and phytoremediation potential of Catharanthus roseus in Cu- and Pb-contaminated soils. The bacterial strains exhibited significantly higher level of water-extractable Pb and Cu in Pb, Cu, and Cu+Pb-contaminated. The P. fluorescens RB4 inoculated plants, produced 102%, 48%, and 45% higher fresh weight (FW) in soils contaminated with Cu, Pb, and both elements, respectively, as compared to un-inoculated control plants. Similarly, B. subtilis 189 inoculated plants produced 108%, 43%, and 114% more FW in the presence of Cu, Pb, and both elements. The plants co-cultivated with both bacteria exhibited 121%, 102%, and 177% higher FW, in Cu, Pb, and both elements contaminated soils, as compared to respective un-inoculated control. Co-cultivation of P. fluorescens RB4, B. subtilis 189, and P. fluorescens RB4 + B. subtilis 189 resulted in higher accumulation of Cu and Pb in shoots of the C. roseus grown in contaminated soils as compared to un-inoculated control. Bacterial treatments also improved the translocation and metal bioconcentration factors. The growth and phytoextraction capability of C. roseus was improved by inoculation of P. fluorescens RB4 and B. subtilis 189.  相似文献   

16.
The present investigation deals with the advantages and potential of the Acacia nilotica bark as an adsorbent of toxic metals. Bark (1 g) when added to 100 ml of aqueous solution containing 10 μg ml-1 metal solution exhibited different metal adsorption values for different metals. The order of metal adsorption being Cr ≥ Ni > Cu > Cd > As > Pb. A similar trend of metal adsorption was observed when the bark is reused (1st recycle) Cr> Ni > Cu > Cd > Pb and also in the column sorption. In order to verify the metal removal property of A. nilotica bark, toxicity bioassay with Salix viminalis stem cuttings in hydroponic system augmented with Cd, Cr, and Pb together with A. nilotica bark powder was carried out. The results of toxicity bioassay confirmed the metal adsorption property of the bark powder. The functions of toxicity studies include leaf area, root length and number of new root primordia produced per stump. The leaf area, root length, and the number of new root primordia increased considerably in the presence of A. nilotica bark. The order of metal toxicity for leaf area and new root primordial is Cd > Cr > Pb. However, for root length the order of metal toxicity is Cr > Cd > Pb. The metal budgets of the leaf and root confirmed that the bark powder had adsorbed substantial amount of toxic metals and thus alleviates the toxicity imposed by the various tested elements. Hence, the utility of A. nilotica bark in developing and designing innovative technology for the clean up of toxic elements in aqueous solutions and possible scope for its use in phytoremediation are discussed.  相似文献   

17.

Aims

We aim to determine if Pseudomonas fluorescens is a viable biological control for Erwinia tracheiphila within the insect vector, Acalymma vittatum.

Methods and Results

Pseudomonas fluorescens secreted fluorescein and inhibited growth of E. tracheiphila in disc diffusion assays. To determine if this antagonism was conserved within the insect vector, we performed in vivo assays by orally injecting beetles with bacterial treatments and fluorescent in situ hybridization to determine bacterial presence within the alimentary canal.

Conclusions

Pseudomonas fluorescens inhibited the growth of E. tracheiphila on a nutrient‐limiting medium. In situ experiments demonstrated that P. fluorescens is maintained within the alimentary canal of the beetle for at least 4 days, and co‐occurred with E. tracheiphila. When beetles were first presented with Pseudomonas and then challenged with E. tracheiphila, E. tracheiphila was not recovered via FISH after 4 days. These data suggest that P. fluorescens has potential as a biological control agent to limit E. tracheiphila within the insect vector.

Significance and Impact of the Study

This is a novel approach for controlling E. tracheiphila that has the potential to decrease reliance on insecticides, providing a safer environment for pollinators and growers.  相似文献   

18.
A range of titanium doped diamond-like carbon (Ti-DLC) coatings with different Ti contents were prepared on stainless steel substrates using a plasma-enhanced chemical vapour deposition technique. It was found that both the electron donor surface energy and the surface roughness of the Ti-DLC coatings increased with increasing Ti contents in the coatings. Bacterial adhesion to the coatings was evaluated against Escherichia coli WT F1693 and Pseudomonas aeruginosa ATCC 33347. The experimental data showed that bacterial adhesion decreased with the increases of the Ti content, the electron donor surface energy and surface roughness of the coatings, while the bacterial removal percentage increased with the increases of these parameters. The Ti-DLC coatings reduced bacterial attachment by up to 75% and increased bacterial detachment from 15 to 45%, compared with stainless steel control.  相似文献   

19.

Glutaraldehyde (GTA) is a widely used biocide due to its high effectiveness. The experimental work reported here was carried out to assess the effectiveness of GTA in controlling biofilms formed by Pseudomonas fluorescens on stainless steel slides, and to compare efficacy against both planktonic and sessile micro‐rganisms. The tests were performed using two concentrations of GTA (50 and 100mg 1‐1), biofilms of two ages (7 and 15 d), several pH values (5,7 and 9) and a range of exposure times (from 0 (control) to 1,3,7 and 24 h). The action of GTA on biofilm and planktonic populations was assessed by means of activity tests, zeta potential, and the wet weight of the biofilms. Biofilms were not completely removed after treatment with GTA in any of the conditions studied. The higher GTA concentration was more effective in reducing the bacterial activity of the biofilm. The biocide proved to be more effective for longer exposure times. GTA showed good antimicrobial activity against P. fluorescens in suspension, with higher activity at pH 9. The findings of this study suggest that when GTA is used to control biofilms, it reacts with one of the components of the matrix, the proteins, thereby reducing its antimicrobial action.  相似文献   

20.
Laboratory studies on adhesion of microalgae to hard substrates   总被引:1,自引:0,他引:1  
Sekar  R.  Venugopalan  V.P.  Satpathy  K.K.  Nair  K.V.K.  Rao  V.N.R. 《Hydrobiologia》2004,512(1-3):109-116
Adhesion of Chlorella vulgaris(chlorophyceae), Nitzschia amphibia(bacillariophceae) and Chroococcus minutus(cyanobacteria) to hydrophobic (perspex, titanium and stainless steel 316-L), hydrophilic (glass) and toxic (copper, aluminium brass and admiralty brass) substrata were studied in the laboratory. The influence of surface wettability, surface roughness, pH of the medium, culture age, culture density, cell viability and presence of organic and bacterial films on the adhesion of Nitzschia amphibia was also studied using titanium, stainless steel and glass surfaces. All three organisms attached more on titanium and stainless steel and less on copper and its alloys. The attachment varied significantly with respect to exposure time and different materials. The attachment was higher on rough surfaces when compared to smooth surfaces. Attachment was higher on pH 7 and above. The presence of organic film increased the attachment significantly when compared to control. The number of attached cells was found to be directly proportional to the culture density. Attachment by log phase cells was significantly higher when compared to stationary phase cells. Live cells attached more when compared to heat killed and formalin killed cells. Bacterial films of Pseudomonas putida increased the algal attachment significantly. %  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号