首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Biogas from anaerobic digestion of biological wastes is a renewable energy resource that mainly contains CH4, CO2, trace amounts of H2S and a fraction of H2O vapour. In order to transfer biogas into biomethane to meet the standards for use as vehicle fuel or for injection in the natural gas grid, removing H2S from biogas in advance is necessary. In addition, biogas is usually saturated with water vapour. It is significant to study the effect of the presence of H2O on the biogas separation performance. Adsorption of H2S/CO2/CH4 and H2O/CO2/CH4 ternary mixtures using single-walled carbon nanotubes (SWCNT) were investigated via the Grand Canonical Monte Carlo (GCMC) method. We studied the effects of carbon nanotube diameter, –COOH modification, temperature and pressure on H2S adsorption. The results indicate that the presence of hydrophilic –COOH groups does affect the separation of H2S/CO2/CH4 mixtures. Temperature swing adsorption is more suitable than pressure swing adsorption for the separation of H2S/CO2/CH4 mixtures. The effect of water vapour on the separation of CO2/CH4 was also investigated. The result shows that the presence of H2O has little effect on the selectivity of CO2/CH4 in pristine CNT, but the selectivity of CO2/CH4 with the presence of H2O is markedly enhanced after modification in –COOH modified SWCNT with specific modification degree. It is expected that this work could provide some useful information for biogas upgrading.  相似文献   

2.
Abstract

Molecular simulation methods were applied to study the effect of hydrophilicity on CO2/CH4 separation using carbon nanotube (CNT) membranes. CNTs with a diameter of ~1 nm were functionalised by varying amounts of carbonyl groups, in order to achieve various hydrophilicity. The presence of –CO groups inside the CNT allow a significant gain in the diffusion selectivity of CO2, while in contrast the adsorption selectivity is hardly changed. The corresponding permeation selectivity increases as the hydrophilicity of the CNT-based membrane increases. However, the permeability of CO2 decreases due to a combination of the intermolecular interactions between the gas and functional groups and the steric effects of the added functional groups. Considering both the permeation selectivity and permeability, it was found that the maximum separation performance is achieved in a certain hydrophilic CNT membrane. Moreover, the separation performance of hydrophilic CNTs for CO2/CH4 mixtures breaks the Robeson upper bound.  相似文献   

3.
Covalent organic frameworks (COFs) are a promising gas separation material which have been developed recently. In this work, we have used grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations to investigate the adsorption and diffusion properties of CO2 and CH4 in five recent synthesised COF materials. We have also considered the properties of amino-modified COFs by adding –NH2 group to the five COFs. The adsorption isotherm, adsorption/diffusion selectivity, self/transport diffusion coefficients have been examined and discussed. All of the five COFs exhibit promising adsorption selectivity which is higher than common nanoporous materials. An S-shaped adsorption isotherm can be found for CO2 instead of CH4 adsorption. The introduction of –NH2 group is effective at low pressure region (<200?kPa). The diffusion coefficients are similar for TS-COFs but increase with the pore size for PI-COFs, and the diffusion coefficients seem less dependent on the –NH2 groups.  相似文献   

4.
Gas adsorption and separation performance of COF-108 framework impregnated by C60 clusters were simulated. The adsorption properties of pure CO2, the mixtures of CO2/CH4, CO2/N2 and N2/O2 were investigated. The simulated results of the adsorption isotherms, the adsorption quantity, the density fields, the isosteric heats and the selectivity in COF-108s were obtained. It is shown that the impregnation of C60 can enhance the adsorption capacity of CO2, N2 and O2, and the selectivity of CO2/CH4, CO2/N2 and N2/O2 in COF-108. The impregnation of C60 can increase the surface area COF-108 but decrease its free volume and the pore diameter. At low adsorption pressures, the monolayer surface adsorption is dominant. With the increase in adsorption pressure, the dominant factor is changed into the free volume of COF-108 by the multilayer adsorption. The impregnation of C60 plays different roles for the polar or non-polar gases at different pressures.  相似文献   

5.
Abstract

The Grand Canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulation methods were used to investigate the adsorption and diffusion properties of CH4 and CO2 in montmorillonite slit-nanopores. It is found that, both CH4 and CO2 could adsorb closely onto the pore surface, while different adsorption states occur for CH4 and CO2, respectively, in montmorillonite slit-nanopores. Competitive adsorption of CO2 over CH4 exists in montmorillonite slit-nanopores, especially at the lower pressures, which is attributed to the different interaction intensity between the CH4–CO2 molecules and the pore surface. The diffusion coefficients of CH4 and CO2 both decrease with the enhanced pressures, while the CO2 has a relative weak diffusion coefficient comparing with CH4. A well displacement of the residual CH4 by CO2 in montmorillonite slit-nanopores was investigated, which is found that the displacement efficiency increases with the enhanced bulk pressures. It was determined that, the CO2 can be captured and reserved in the montmorillonite slit-nanopores during the displacement, and the sequestration amount of CO2 gets enhanced with the bulk pressure increasing. This study provides micro-behaviours of CH4 and CO2 in montmorillonite slit-nanopores, for the purpose to give out useful guidance for enhancing shale gas extraction by injecting CO2.  相似文献   

6.
The adsorption of the CO2/CH4 mixture in coal affects the CO2-enhanced coalbed methane recovery project. To gain a better understanding of CH4 and CO2 interaction with middle-rank coal, we developed a molecular concept with support for the sorption of CH4 and CO2 on Ximing-8 coal (XM-8) (1.8% vitrinite reflectance). A XM-8 coal model was built by using molecular dynamic (MD) simulations. The molecular simulations were established by the Grand Canonical Monte Carlo and MD methods to study the effects of the temperature, pressure, and species bulk mole fraction on the pure component adsorption isotherms, isosteric heat and adsorption selectivity. It turns out that the CO2 selectivity decreases as the pressure and its own bulk mole fraction increases, but it increases as temperature increases, and the selectivity values are not always greater than 1. The interactions between the small molecules and XM-8 were determined by using density functional theory. It was found that the interactions between the CO2 and XM-8 surface is greater, particularly for the heteroatoms than CH4. The adsorption selectivity and interaction were simultaneously used to reveal that the advantageously substituted range is high temperature, low pressure and a high content of heteroatoms.  相似文献   

7.
Separation of important chemical feedstocks, such as C2H6 from natural gas, can greatly benefit the petrochemical industry. In this paper, the grand canonical Monte Carlo method has been used to study the adsorption and separation of CH4 and C2H6 in zeolites, isoreticular metal-organic framework-1 (IRMOF-1) and zeolitic imidazolate frameworks (ZIFs) with different topology, including soadlite, gmelinite and RHO topologies. Compared with mordenite zeolite and IRMOF-1, ZIFs and mordenite framework inverted (MFI) zeolite have better separation performance for C2H6/CH4 mixtures at different mole fractions of C2H6. From the study of equilibrium snapshots and density distribution profiles, adsorption sites could be grouped as (1) sites with strong interactions with adsorbent and (2) sites with strong interactions with surrounding adsorbates. The gas molecules occupied the first site and then went on to occupy the second site. In CH4/C2H6 mixture adsorption/separation, the adsorption of CH4 was confined by the existence of C2H6. Due to energetic effect, C2H6 selectivity was affected by temperature at a low-pressure range, but did not change as much in a high-pressure range because of packing effect in micropore. In binary adsorption, large C2H6 molecules favour sites with strong adsorbent interactions. At high pressures, packing effects played an important role and it became easy for small CH4 molecules to access the sites with strong adsorbate interactions.  相似文献   

8.
温带针阔混交林土壤碳氮气体通量的主控因子与耦合关系   总被引:3,自引:0,他引:3  
中高纬度森林地区由于气候条件变化剧烈,土壤温室气体排放量的估算存在很大的不确定性,并且不同碳氮气体通量的主控因子与耦合关系尚不明确。以长白山温带针阔混交林为研究对象,采用静态箱-气相色谱法连续4a(2005—2009年)测定土壤二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)净交换通量以及温度、水分等相关环境因子。研究结果表明:温带针阔混交林土壤整体上表现为CO2和N2O的排放源和CH4的吸收汇。土壤CH4、CO2和N2O通量的年均值分别为-1.3 kg CH4hm-2a-1、15102.2 kg CO2hm-2a-1和6.13 kg N2O hm-2a-1。土壤CO2通量呈现明显的季节性规律,主要受土壤温度的影响,水分次之;土壤CH4通量的季节变化不明显,与土壤水分显著正相关;土壤N2O通量季节变化与土壤CO2通量相似,与土壤水分、温度显著正相关。土壤CO2通量和CH4通量不存在任何类型的耦合关系,与N2O通量也不存在耦合关系;土壤CH4和N2O通量之间表现为消长型耦合关系。这项研究显示温带针阔混交林土壤碳氮气体通量主要受环境因子驱动,不同气体通量产生与消耗之间存在复杂的耦合关系,下一步研究需要深入探讨环境变化对其耦合关系的影响以及内在的生物驱动机制。  相似文献   

9.
We measured the exchange of N2O and CH4 between the atmosphere and soils in 5 spruce-fir stands located along a transect from New York to Maine. Nitrous oxide emissions averaged over the 1990 growing season (May–September) ranged from 2.1 ug N2O-N/m2-hr in New York to 0.4 ug N2O-N/m2-hr in Maine. The westernmost sites, Whiteface Mtn., New York and Mt. Mansfield, Vermont, had the highest nitrogen-deposition, net nitrification and N2O emissions. Soils at all sites were net sinks for atmospheric CH4 Methane uptake averaged over the 1990 growing season ranged from 0.02 mg CH4-C/M2-hr in Maine to 0.05 mg CH4-C/m2-hr in Vermont. Regional differences in CH4 uptake could not be explained by differences in nitrogen-deposition, soil nitrogen dynamics, soil moisture or soil temperature. We estimate that soils in spruce-fir forests at our study sites released ca. 0.02 to 0.08 kg N2O-N/ha and consumed ca. 0.74 to 1.85 kg CH4 C/ha in the 1990 growing season.  相似文献   

10.
The effects of elevated concentrations of atmospheric CO2 on CH4 and N2O emissions from rice soil were investigated in controlled-environment chambers using rice plants growing in pots. Elevated CO2 significantly increased CH4 emission by 58% compared with ambient CO2. The CH4 emitted by plant-mediated transport and ebullition–diffusion accounted for 86.7 and 13.3% of total emissions during the flooding period under ambient level, respectively; and for 88.1 and 11.9% of total emissions during the flooding period under elevated CO2 level, respectively. No CH4 was emitted from plant-free pots, suggesting that the main source of emitted CH4 was root exudates or autolysis products. Most N2O was emitted during the first 3 weeks after flooding and rice transplanting, probably through denitrification of NO3 contained in the experimental soil, and was not affected by the CO2 concentration. Pre-harvest drainage suppressed CH4 emission but did not cause much N2O emission (< 10 μg N m−2 h−1) from the rice-plant pots at both CO2 concentrations.  相似文献   

11.
In this work, the adsorption of acetylene and its binary mixture with methane on MOF-5, HKUST-1 and MOF-505 was studied using Grand Canonical Monte Carlo molecular simulations. The preferred adsorption sites of acetylene and methane molecules into metal–organic frameworks (MOFs) were investigated. The simulated adsorption isotherms of acetylene on MOF-5 and MOF-505 agreed well with the experimental ones without any reparameterisation of the potential parameters but for HKUST-1 the interaction parameters of the acetylene and copper ion were reparameterised. Comparisons of the calculated adsorption isotherms of acetylene in the studied MOFs showed that the MOF-5 had the lowest adsorption capacity. Our results revealed that guest molecules were most adsorbed on the entrance windows of the octagon pore of HKUST-1, while the preferred adsorption sites were large pores and on the metal ion cluster of MOF-505 and MOF-5, respectively. Adsorption of binary mixtures of methane and acetylene on MOF-5, HKUST-1 and MOF-505 revealed that acetylene adsorption is higher than that of methane. Finally, the results showed that C2H2/CH4 selectivity values on HKUST-1 are significantly higher than on MOF-505 and MOF-5. The preferred adsorption sites of acetylene and methane in an equimolar binary mixture were calculated and discussed.  相似文献   

12.
Dyes exposure in aquatic environment creates risks to human health and biota due to their intrinsic toxic mutagenic and carcinogenic characteristics. In this work, a metal-organic frameworks materials, zeolitic imidazolate framework-8 (ZIF-8), was synthesized through hydrothermal reaction for the adsorptive removal of harmful Congo red (CR) from aqueous solution. Results showed that the maximum adsorption capacity of CR onto ZIF-8 was ultrahigh as 1250 mg g?1. Adsorption behaviors can be successfully fitted by the pseudo-second order kinetic model and the Langmuir isotherm equation. Solution conditions (pH condition and the co-exist anions) may influent the adsorption behaviors. The adsorption performance at various temperatures indicated the process was a spontaneous and endothermic adsorption reaction. The enhanced adsorption capacity was determined due to large surface area of ZIF-8 and the strong interactions between surface groups of ZIF-8 and CR molecules including the electrostatic interaction between external active sites Zn?OH on ZIF-8 -and ?SO3 or –N=N– sites in CR molecule, and the ππ interaction.  相似文献   

13.
A new semi-analytical mean-field model is proposed to rationalise breathing of MIL-53 type materials. The model is applied on two case studies, the guest-induced breathing of MIL-53(Cr) with CO2 and CH4, and the phase transformations for MIL-53(Al) upon xenon adsorption. Experimentally, MIL-53(Cr) breathes upon CO2 adsorption, which was not observed for CH4. This result could be ascribed to the stronger interaction of carbon dioxide with the host matrix. For MIL-53(Al) a phase transition from the large pore phase could be enforced to an intermediate phase with volumes of about 1160–1300 Å3, which corresponds well to the phase observed experimentally upon xenon adsorption. Our thermodynamic model correlates nicely with the adsorption pressure model proposed by Coudert et al. Furthermore the model can predict breathing behaviour of other flexible materials, if the user can determine the free energy of the empty host, the interaction energy between a guest molecule and the host matrix and the pore volume accessible to the guest molecules. This will allow to generate the osmotic potential from which the equilibria can be deduced and the anticipated experimentally observed phase may be predicted.  相似文献   

14.
The aim of this study is to estimate emissions of greenhouse gases CO2, CH4 and N2O, and the effects of drainage and peat extraction on these processes, in Estonian transitional fens and ombrotrophic bogs. Closed-chamber-based sampling lasted from January to December 2009 in nine peatlands in Estonia, covering areas with different land-use practices: natural (four study sites), drained (six sites), abandoned peat mining (five sites) and active peat mining areas (five sites). Median values of soil CO2 efflux were 1,509, 1,921, 2,845 and 1,741 kg CO2-C ha?1 year?1 from natural, drained, abandoned and active mining areas, respectively. Emission of CH4-C (median values) was 85.2, 23.7, 0.07 and 0.12 kg ha?1 year?1, and N2O-N ?0.05, ?0.01, 0.18 and 0.19 kg ha?1 year?1, respectively. There were significantly higher emissions of CO2 and N2O from abandoned and active peat mining areas, whereas CH4 emissions were significantly higher in natural and drained areas. Significant Spearman rank correlation was found between soil temperature and CO2 flux at all sites, and CH4 flux with high water level at natural and drained areas. Significant increase in CH4 flux was detected for groundwater levels above 30 cm.  相似文献   

15.
The temporal variations in CO2, CH4 and N2O fluxes were measured over two consecutive years from February 2007 to March 2009 from a subtropical rainforest in south‐eastern Queensland, Australia, using an automated sampling system. A concurrent study using an additional 30 manual chambers examined the spatial variability of emissions distributed across three nearby remnant rainforest sites with similar vegetation and climatic conditions. Interannual variation in fluxes of all gases over the 2 years was minimal, despite large discrepancies in rainfall, whereas a pronounced seasonal variation could only be observed for CO2 fluxes. High infiltration, drainage and subsequent high soil aeration under the rainforest limited N2O loss while promoting substantial CH4 uptake. The average annual N2O loss of 0.5 ± 0.1 kg N2O‐N ha?1 over the 2‐year measurement period was at the lower end of reported fluxes from rainforest soils. The rainforest soil functioned as a sink for atmospheric CH4 throughout the entire 2‐year period, despite periods of substantial rainfall. A clear linear correlation between soil moisture and CH4 uptake was found. Rates of uptake ranged from greater than 15 g CH4‐C ha?1 day?1 during extended dry periods to less than 2–5 g CH4‐C ha?1 day?1 when soil water content was high. The calculated annual CH4 uptake at the site was 3.65 kg CH4‐C ha?1 yr?1. This is amongst the highest reported for rainforest systems, reiterating the ability of aerated subtropical rainforests to act as substantial sinks of CH4. The spatial study showed N2O fluxes almost eight times higher, and CH4 uptake reduced by over one‐third, as clay content of the rainforest soil increased from 12% to more than 23%. This demonstrates that for some rainforest ecosystems, soil texture and related water infiltration and drainage capacity constraints may play a more important role in controlling fluxes than either vegetation or seasonal variability.  相似文献   

16.
17.
An atomistic simulation study is reported for H2 purification from a gas mixture in zeolitic imidazolate framework-7 (ZIF-7) membrane. The gas mixture (with composition H2:CO2:CO:CH4:H2O = 74:15:5:5:1) mimics a typical effluent gas in syngas production. The simulation demonstrates that ZIF-7 membrane can act as an ultra-selective nanofilter only allowing H2 to permeate, as attributed to the molecular sieving effect of small apertures in ZIF-7. The flux and permeance of H2 increase with increasing pressure. At a given pressure, H2 flux exhibits an Arrhenius-type relation with temperature. With increasing pressure, the activation energy of H2 permeation decreases. H2 molecules in the membrane adopt a preferential orientation parallel to phenylimidazolate building blocks. This study confirms experimental observations that ZIF-7 is an interesting membrane material for H2 purification and provides atomistic insight into the purification mechanism in ZIF-7 membrane.  相似文献   

18.
Climate change reduces the net sink of CH4 and N2O in a semiarid grassland   总被引:1,自引:0,他引:1  
Atmospheric concentrations of methane (CH4) and nitrous oxide (N2O) have increased over the last 150 years because of human activity. Soils are important sources and sinks of both potent greenhouse gases where their production and consumption are largely regulated by biological processes. Climate change could alter these processes thereby affecting both rate and direction of their exchange with the atmosphere. We examined how a rise in atmospheric CO2 and temperature affected CH4 and N2O fluxes in a well‐drained upland soil (volumetric water content ranging between 6% and 23%) in a semiarid grassland during five growing seasons. We hypothesized that responses of CH4 and N2O fluxes to elevated CO2 and warming would be driven primarily by treatment effects on soil moisture. Previously we showed that elevated CO2 increased and warming decreased soil moisture in this grassland. We therefore expected that elevated CO2 and warming would have opposing effects on CH4 and N2O fluxes. Methane was taken up throughout the growing season in all 5 years. A bell‐shaped relationship was observed with soil moisture with highest CH4 uptake at intermediate soil moisture. Both N2O emission and uptake occurred at our site with some years showing cumulative N2O emission and other years showing cumulative N2O uptake. Nitrous oxide exchange switched from net uptake to net emission with increasing soil moisture. In contrast to our hypothesis, both elevated CO2 and warming reduced the sink of CH4 and N2O expressed in CO2 equivalents (across 5 years by 7% and 11% for elevated CO2 and warming respectively) suggesting that soil moisture changes were not solely responsible for this reduction. We conclude that in a future climate this semiarid grassland may become a smaller sink for atmospheric CH4 and N2O expressed in CO2‐equivalents.  相似文献   

19.
采伐对小兴安岭落叶松-泥炭藓沼泽温室气体排放的影响   总被引:4,自引:0,他引:4  
利用静态箱-气相色谱法,研究了择伐和皆伐对小兴安岭落叶松-泥炭藓沼泽CH4、CO2、N2O排放的影响.结果表明:采伐改变了落叶松-泥炭藓沼泽CH4和N2O的季节排放规律,其中对照样地的CH4为夏季吸收、秋季排放,N2O夏秋季吸收;择伐样地的CH4和N2O在夏季集中排放;皆伐样地的CH4在夏秋季排放,N2O则在夏季吸收、秋季排放.但采伐对CO2季节排放规律的影响,均为夏季春季秋季.采伐改变了CH4、CO2和N2O的源汇功能,对照样地为CO2的排放源、CH4和N2O的弱吸收汇;采伐地的CO2排放量下降了1/4,并转化为N2O弱排放源,为CH4的弱排放源或强排放源.择伐样地温室效应贡献潜力较对照样地下降了24.5%,皆伐地则提高了3.2%.  相似文献   

20.
Grand canonical Monte Carlo and equilibrium molecular dynamics simulations were used to assess the performance of an rht-type metal–organic framework (MOF), Cu-TDPAT, in adsorption-based and membrane-based separation of CH4/H2, CO2/CH4 and CO2/H2 mixtures. Adsorption isotherms and self-diffusivities of pure gases and binary gas mixtures in Cu-TDPAT were computed using detailed molecular simulations. Several properties of Cu-TDPAT such as adsorption selectivity, working capacity, diffusion selectivity, gas permeability and permeation selectivity were computed and compared with well-known zeolites and MOFs. Results showed that Cu-TDPAT is a very promising adsorbent and membrane material especially for separation of CO2 and it can outperform traditional zeolites and MOFs such as DDR, MFI, CuBTC, IRMOF-1 in adsorption-based CO2/CH4 and CO2/H2 separations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号