首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A new method of computation of generalized susceptibility and dynamical structure factor through molecular dynamics (MD) simulation is proposed. This gives rise to a reliable and accurate result more than that calculated from a conventional method with a direct Fourier transformation. Computational results are presented for the imaginary part of the generalized susceptibility, X″ (ω), for a binary soft-sphere fluid with a super-long-time molecular dynamics (MD) simulation. Both α- and β-peaks in X″ (ω) in a supercooled fluid is shown for the first time through the present MD computation. The MD result obtained is in a good agreement with that obtained by the trapping diffusion model, which we have previously proposed for the glass transition.  相似文献   

2.
Han  Nanyu  Tang  Minyuan  Wan  Sidi  Jiang  Zhanbao  Yue  Yong  Zhao  Xiangui  Yang  Jinrun  Huang  Zunxi 《Biotechnology letters》2021,43(7):1403-1411
Objectives

This study was aimed at engineering charged residues on the surface of Thermomyces lanuginosus lipase (TLL) to obtain TLL variant with elevated performance for industrial applications.

Results

Site-directed mutagenesis of eight charged amino acids on the TLL surface were conducted and substitutions on the negatively charged residues D111, D158, D165, and E239 were identified with elevated specific activities and biodiesel yields. Synergistic effect was not discovered in the double mutants, D111E/D165E and D165E/E239R, when compared with the corresponding single mutants. One TLL mutant, D165E, was identified with increased specific activity (456.60 U/mg), catalytic efficiency (kcat/Km: 44.14 s?1 mM?1), the highest biodiesel conversion yield (93.56%), and comparable thermostability with that of the TLL.

Conclusions

Our study highlighted the importance of surface charge engineering in improving TLL activity and biodiesel production, and the resulting TLL mutant, D165E, is a promising candidate for biodiesel industry.

  相似文献   

3.
Ncd is a Kinesin-14 family protein that walks to the microtubule's minus end. Although available structures show its α-helical neck in either pre- or post-stroke orientations, little is known about the transition between these two states. Using a combination of molecular dynamics simulations and structural analyses, we find that the neck sequentially makes intermediate contacts with the motor head along its mostly longitudinal path, and it develops a 24° twist in the post-stroke orientation. The forward (pre-stroke to post-stroke) motion has an ∼4.5 kBT (where kB is the Boltzmann constant, and T = 300 K) free-energy barrier and is a diffusion guided by the intermediate contacts. The post-stroke free-energy minimum is higher and is formed ∼10° before reaching the orientation in the post-stroke crystal structure, consistent with previous structural data. The importance of intermediate contacts correlates with the existing motility data, including those for mutant Ncds. Unlike the forward motion, the recovery stroke goes nearly downhill in free energy, powered in part by torsional relaxation of the neck. The hysteresis in the energetics of the neck motion arises from the mechanical compliance of the protein, and together with guided diffusion, it may be key to the directed motility of Ncd.  相似文献   

4.
Du  Nan  Chen  Jiao  Sun  Yanni 《BMC genomics》2019,20(2):49-62
Background

Single-molecule, real-time sequencing (SMRT) developed by Pacific BioSciences produces longer reads than second-generation sequencing technologies such as Illumina. The increased read length enables PacBio sequencing to close gaps in genome assembly, reveal structural variations, and characterize the intra-species variations. It also holds the promise to decipher the community structure in complex microbial communities because long reads help metagenomic assembly. One key step in genome assembly using long reads is to quickly identify reads forming overlaps. Because PacBio data has higher sequencing error rate and lower coverage than popular short read sequencing technologies (such as Illumina), efficient detection of true overlaps requires specially designed algorithms. In particular, there is still a need to improve the sensitivity of detecting small overlaps or overlaps with high error rates in both reads. Addressing this need will enable better assembly for metagenomic data produced by third-generation sequencing technologies.

Results

In this work, we designed and implemented an overlap detection program named GroupK, for third-generation sequencing reads based on grouped k-mer hits. While using k-mer hits for detecting reads’ overlaps has been adopted by several existing programs, our method uses a group of short k-mer hits satisfying statistically derived distance constraints to increase the sensitivity of small overlap detection. Grouped k-mer hit was originally designed for homology search. We are the first to apply group hit for long read overlap detection. The experimental results of applying our pipeline to both simulated and real third-generation sequencing data showed that GroupK enables more sensitive overlap detection, especially for datasets of low sequencing coverage.

Conclusions

GroupK is best used for detecting small overlaps for third-generation sequencing data. It provides a useful supplementary tool to existing ones for more sensitive and accurate overlap detection. The source code is freely available at https://github.com/Strideradu/GroupK.

  相似文献   

5.
Abstract

Assessing the amount of released K from minerals in bacterial liquid culture is the main process for screening and isolation of efficient potassium releasing bacteria (KRB). This study was aimed to determine the amount of released K in solution phase or supernatant (SK) as well as microbial biomass K (MBK). Therefore, 20 different bacterial isolates belonging to the 10 bacterial genera (Beijerinckia, Klebsiella, Azotobacter, Pseudomonas, Agrobacterium, Rhizobium, Sphingomonas, Citrobacter, Microbacterium, and Achromobacter) were individually used to inoculate Aleksandrov medium in presence of biotite or muscovite. Our results from in-vitro experiments revealed that the MBK (K in pellet) is more important than in SK. Although some genera such as Azotobacter and Citrobacter released more SK (16?mg/l from biotite and 12.77?mg/l from muscovite, respectively), the Klebsiella isolates with the highest MBK could release an average of 90?mg/l total K. This study indicated that the assimilated K in microbial cells is the main part of K dissolution from minerals. Due to the fast turnover of nutrients in bacterial biomass, it can be concluded that both SK and MBK could be available for plants. It seems that the finding of this research should be considered in the isolation of KRB.

Highlights

  • This study reports, assessment of soluble and biomass K in the culture medium is a reliable tool for estimation of K releasing efficiency of bacteria

  • Our results from in vitro experiments revealed that the assimilated K in microbial cells is the main part of K dissolved from minerals.

  • Although some genera such as Azotobacter released more K in solution phase, the Klebsiella isolates with the highest biomass K could release more total K

  相似文献   

6.
Zhao  Liang  Xie  Jin  Bai  Lin  Chen  Wen  Wang  Mingju  Zhang  Zhonglei  Wang  Yiqi  Zhao  Zhe  Li  Jinyan 《BMC genomics》2018,19(10):1-10
Background

NGS data contains many machine-induced errors. The most advanced methods for the error correction heavily depend on the selection of solid k-mers. A solid k-mer is a k-mer frequently occurring in NGS reads. The other k-mers are called weak k-mers. A solid k-mer does not likely contain errors, while a weak k-mer most likely contains errors. An intensively investigated problem is to find a good frequency cutoff f0 to balance the numbers of solid and weak k-mers. Once the cutoff is determined, a more challenging but less-studied problem is to: (i) remove a small subset of solid k-mers that are likely to contain errors, and (ii) add a small subset of weak k-mers, that are likely to contain no errors, into the remaining set of solid k-mers. Identification of these two subsets of k-mers can improve the correction performance.

Results

We propose to use a Gamma distribution to model the frequencies of erroneous k-mers and a mixture of Gaussian distributions to model correct k-mers, and combine them to determine f0. To identify the two special subsets of k-mers, we use the z-score of k-mers which measures the number of standard deviations a k-mer’s frequency is from the mean. Then these statistically-solid k-mers are used to construct a Bloom filter for error correction. Our method is markedly superior to the state-of-art methods, tested on both real and synthetic NGS data sets.

Conclusion

The z-score is adequate to distinguish solid k-mers from weak k-mers, particularly useful for pinpointing out solid k-mers having very low frequency. Applying z-score on k-mer can markedly improve the error correction accuracy.

  相似文献   

7.
Abstract

UV absorption, circular dichroïsm (CD) and 1H NMR, associated with Monte Carlo (MC) molecular structure simulations have been applied to the study of the trinucleoside diphosphate: r(ACC).

The MC study which has been conducted as a function of temperature, is based on random variations of the nucleotide conformational angles, i.e. phosphodiester chain torsional angles and sugar pucker pseudorotational angles. All of the chemical bond lengths and valence angles remained fixed during the structural simulation, except those of the sugar pucker. Six different initial structures have been selected in order to explore the molecular conformational space as completely as possible. This simulation procedure led to distinct families of equilibrium conformations at 283,298 and 318 K.

The thermodynamical parameters such as variations in entropy, enthalpy and also melting temperature (ΔS0 x, ΔH0 x and Tm) of the stacking (X) equilibrium were obtained from UV absorption and circular dichroïsm (CD) spectra recorded over a 80K temperature range. Chemical shifts (δ), vicinal coupling constants(3J k) and cross-relaxation rates (σk,l) of trimers were measured at 400.13 MHz over a range of concentrations (2–13mM) and temperatures (283–333K). Least-squares fitting of the experimental chemical shifts to simple models of association (A) and stacking equilibria allowed separation of the variations in the δ values (Δδx and ΔδA) due to either phenomenon. The three NMR data sets (Δδx, 3Jk,l and σk.l) were then evaluated for the minima conformers obtained with the MC simulations. Theoretical values of Δδx were estimated using the results of an ab initio study while the coupling constant data were simulated with Karplus-type equations. Finally, the relaxation data were simulated from the distance matrices using treatment for cases of both slow conformational exchange accompanied by rapid small-amplitude fluctuations about the minima structures.

A consistent picture of the large amplitude deformations (torsional angle variation) of these trimers has emerged from the present study. Optimized conformational blends at 283, 296 and 318K were obtained by least-squares fitting of the experimental data to the theoretical ones, while considering the populations as adjustable parameters. As it would be expected, the right-handed helical conformation (A-RNA type) is found to be the major stacked species, in the temperature range of 283 to 318K. Limited evidence for bulged structures has been obtained, whereas novel reverse-stacked and half-stacked conformers also presented theoretical data compatible with the NMR observables of aqueous r(ACC).  相似文献   

8.
Abstract

In this study the authors attempt to correlate kinetic constants for carbamylation of AChE, by a series of carbamate inhibitors, with the conformational positioning of Trp84 in transition state complexes of the same carbamates with Torpedo AChE, as obtained by computerized molecular modelling. They present evidence for changes in the distance of the carbamates from the center of the indole ring which can be correlated with the bimolecular rate constants for inhibition. As a result the greater the distance from Trp84, the smaller the bimolecular inhibition constant value, k1 (= k2/Ka), becomes. In conclusion, the value of the biinolecular rate constant for selected AChE inhibitors (structural changes that have been hypothesised or natural alkaloids of unknown activity) which possess similar size and rigidity, can be obtained. Under these conditions energy minimization alone seems to be sufficient even to accurately predict protein-substrate interactions that actually occur. Modelling studies also suggest that conformational re-orientation of Trp84 in the transition state could produce an overall movement of the Cys67-Cys94 loop.  相似文献   

9.
Abstract

Modeling of transition state by molecular dynamic method often requires modification of the force field parameters to describe energy profile accurately. In this work, we avoided the modification by modeling a series of mutants at binding-related site. In predicting the catalytic efficiency (k cat /K m ) of the mutants of mandelate racemase (MR), the prediction performance of three energy subsets was investigated. It was indicated that the interaction-energy subset exhibited better prediction performance than whole-system subset and binding-site subset in both quantity and trend. When prediction error (PE) criterion was equal to 5%, 10 out of 12 samples were predicted correctly within interaction-energy subset, which demonstrated a great application potential of this method in prediction of enzyme catalytic efficiency and enzyme rational design.  相似文献   

10.
Abstract

Molecular dynamics simulation of some alkali metasilicates (M2SiO3, M = Li, Na, K) was performed to compare glass transition temperatures, Tg , defined in various ways. The potential parameters derived from ab initio MO calculations were used and found to reproduce the inflection of V-T relation on cooling the system. The Tg defined by the inflection point corresponds well to that defined by geometrical changes of coordination polyhedra found in previous work. The self-diffusion coefficients of the alkali ions in higher temperature regions were shown to be related to the amount of free volume in these systems.  相似文献   

11.
Abstract

In this paper, a series of novel 3-methyl-quinazolinone derivatives was designed, synthesised and evaluated for antitumor activity in vitro on wild type epidermal growth factor receptor tyrosine kinase (EGFRwt-TK) and three human cancer cell lines including A549, PC-3, and SMMC-7721. The results displayed that some of the compounds had good activities, especially 2-{4-[(3-Fluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5?g), 2-{4-[(3,4-Difluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5k) and 2-{4-[(3,5-Difluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5?l) showed high antitumor activities against three cancer cell lines. Moreover, compound 5k could induce late apoptosis of A549 cells at high concentrations and arrest cell cycle of A549 cells in the G2/M phase at tested concentrations. Also, compound 5k could inhibit the EGFRwt-TK with IC50 value of 10?nM. Molecular docking data indicates that the compound 5k may exert inhibitory activity by forming stable hydrogen bonds with the R817, T830 amino acid residues and cation-Π interaction with the K72 residue of EGFRwt-TK.  相似文献   

12.
Abstract

We report preliminary molecular dynamics simulations results for platinum atoms confined between two parallel graphite surfaces. The system shows phase transition characteristics corresponding to a second order transition. Significant structural changes are also observed in the range of temperature studied. We have also investigated the effects of two dfferent Pt-wall interaction potentials: the 9-3 form suggested by Crowell and the 10-4 form originally proposed by Steele. The results show that the two systems have rather different structural characteristics but similar thermodynamic behavior.  相似文献   

13.
Abstract

The gel to fluid phase transition or ordered to disordered phase transition observed in biological membranes are simulated by using constant energy Molecular Dynamics. The surface part of the membrane is modelled as a two-dimensional matrix formed by the head groups of the phospholipid molecules. Head molecules which are modelled as three spheres fused with three force centers, interact with each other via van der Waals and Coulomb type interactions. The -so called- impurity or foreign molecule embedded in the surface represents the protein type molecule which is present in biological membranes and control its activity. It is modelled as a pentagon having one force centers in each corner. It also interacts with the surface molecules again via van der Waals and Coulomb type interactions. The surface density is kept constant in the simulations of the systems with or without impurity. Structural and orientational changes due to impurity were observed and proved by monitoring two-dimensional order parameter. It has been shown that melting of the surface or breakage of the ordering of the surface molecules becomes easier and ordered to disordered phase transition temperature was lowered by 100 K if the impurity is present.  相似文献   

14.
Zusammenfassung Aus Kulturen von Streptomyces collinus (Stamm Tü 365) wurde ein neues, gelbes Antibioticum isoliert und durch analytische, spektroskopische und mikrobiologische Daten charakterisiert.
Metabolic products of microorganisms99. Kirromycin
Summary Kirromycin, a new yellow antibiotic, has been isolated from cultures of strain Tü 365 of Streptomyces collinus. It has been characterized by analytical, spectroscopic, and microbiological data.


98. Mitt.: Bayer, E., Gugel, K. H., Hägele, K., Hagenmaier, H., Jessipow, S., König, W. A., Zähner, H.: Helv. chim. Acta 55, 224–239 (1972).  相似文献   

15.
Abstract

The hypothesis of structural alteration in transmembrane helices for signal transduction process is viewed by molecular dynamics simulation techniques. For the c-erbB-2 transmembrane domain involved in oncogenicity, the occurrence of conformational changes has been previously described as transition from the α to π helix. This dynamical feature is thoroughly analyzed for the wild phenotype and oncogenic sequences from a series of 18 simulations carried out on one nanosecond time scale. We show that these structural events do not depend upon the conditions of simulations like force field or starting helix coordinates. We demonstrate that the oncogenic mutations Val659 Glu, Gin and Asp do not prevent the transition. Furthermore, we show that β branched residues, in conjunction with Gly residues in the c-erbB-2 sequence, act as destabilizers for the α helix structure, π deformations are tightly related to other local structural motifs found in soluble and membrane proteins. These structural alterations are discussed in term of structure-activity relationships for the c-erbB-2 activating mechanism mediated by transmembrane domain dimerization.  相似文献   

16.
Abstract

Viroids are single-stranded circular RNA molecules of 240 to 400 nucleotides which are pathogens of certain higher plants and replicate autonomously in the host cell. Virusoids are similar to viroids in respect to size and circularity but replicate only as genomic part of a plant virus. Their structure and structural transitions have been investigated by thermodynamic, kinetic and hydrodynamic methods. The special features of the sequences of these RNAs, which are the basis for their secondary structures and structural flexibility, are investigated with theoretical methods.

A set of thermodynamic parameters for helix growth and loop formation is selected from the literature to calculate secondary structures and structural transitions of single-stranded RNAs. Appropriate modifications of the chosen parameter set are discussed.

For calculations we used either Tinoco-plots and the model of “cooperative helices” or the Zuker-program based on the exact algorithm of Nussinov et al, or both. Calculations were done for viroids and virusoids. As both are single-stranded, circular RNAs we had to modify the Zuker-program as described in the appendix.

Calculations are done for different viroids, i.e. potato spindle tuber, citrus exocortis, chrysanthemum stunt, coconut cadang-cadang, and avocado sunblotch, and for two virusoids, i.e. the circular RNAs of Solanum nodiflorum mottle virus, and velvet tobacco mottle virus. For viroids the calculations confirm our earlier theoretical and experimental results about the extended native structure and the highly cooperative transition into a branched structure. Virusoids show less base pairing, branching in the native secondary structure, and only low cooperativity during denaturation. They resemble more closely the properties of random sequences with length, G:C content, and circularity as in viroids but statistical sequences. The comparison of viroids, virusoids, and circular RNA or random sequences confirms the uniqueness of viroid structure.  相似文献   

17.
The second-order rate constant (k4) for the oxidation of monosubstituted phenols and anilines by lactoperoxidase compound II was examined by Chance's method [B. Chance, Arch. Biochem. Biophys. 71 (1957), 130–136]. When the electronic states of these substrates were calculated by an ab initio molecular orbital method, it was found that the log k4 value correlates well with the highest occupied molecular orbital (HOMO) energy level but not with the net charge or frontier electron density. These results are essentially similar to those reported previously in the case of horseradish peroxidase [J. Sakurada, R. Sekiguchi, K. Sato, and T. Hosoya, Biochemistry 29 (1990), 4093–4098], showing some dissimilar features which are considered to reflect the structural difference between the two enzymes.Abbreviations HOMO highest occupied molecular orbital - HRP horseradish peroxidase - LPO lactoperoxidase (EC 1.11.1.7) - LUMO lowest unoccupied molecular orbital  相似文献   

18.
A general, computer-oriented method permitting to derive Markovian models with required (desired) properties is suggested and illustrated by examples. The method is based on the concept of a transition matrices generating (tmg) optimization operator, which is defined as a pair involving a (linear) transformation T and the associate optimization problem L T . When the latter one is solved a set of transition matrices with required properties (ergodicity, regularity etc.) is get by starting from a sequence of probability vectors {P k } which expresses the test data. Since the corresponding measurements are inevitably subjected to errors, it is not required that {P k } be reached in the step-wise evolution of the process. Instead, it is required to minimize the so-called v-distance with respect to the probability vectors {P k }. The optimization is performed by taking into account some constraints expressing the prior-known properties of the chain. This enables to solve the following problem: Given a sequence of (measured) probability vectors {P k }, find a sequence of transition matrices {P k } leading to the smallest v-distance with respect to {P k } subject to given constraints. Some fundamental properties of the resulting Markov chains are emphasized, which are useful in modeling concrete biological systems. Thus, more realistic Markovian models are obtained starting from test data, as compared with the methods using conventional means.  相似文献   

19.
Abstract

A nonoriented hydrated film of poly(dG-dC) with ≈20 water molecules per nucleotide (called B by Loprete and Hartman (Biochem. 32, 4077–4082 (1993)) was studied by Fourier transform infrared (FT-IR) spectroscopy either as equilibrated sample between 290 and 270 K or, after quenching into the glassy state, as nonequilibrated film isothermally at 200 and 220 K. IR spectral changes on isothermal relaxation at 200 and 220 K, caused by interconversion of two conformer substates, are revealed by difference spectra. Comparison with difference curves obtained in the same manner from two classical B-DNA forms, namely the d(CGCGAATTCGCG)2 dodecamer and polymeric NaDNA from salmon testes, revealed that the spectral changes on BIto-BII interconversion in the classical B-DNA forms are very similar to those in the B-form, and that the spectroscopic differences between the BI and BII features from classical B-DNA and those from the modified B-form are minor. Nonexponential kinetics of the BI→BII transition in the B-form of poly(dG-dC) at 200 K showed that the structural relaxation time is about three times of that in the classical B-DNA forms (≈30 versus ≈10 min at 200 K). The unexpected reversal of conformer substates interconversion (that is BII→BI transition on cooling from 290 K and BI→BII transition on isothermal relaxation at 200 K) observed for classical B-DNA occurs also in the modified B-form. We therefore conclude that restructuring of hydration shells rules the low-temperature dynamics of the B-form via its two conformer substates in the same manner reported for classical B-DNA by Pichler et al. (J. Phys. Chem. B 106, 3263–3274 (2002)).  相似文献   

20.
The results of X-ray structure analysis of metmyoglobin at 300 K, 185 K, 165 K, 115 K and 80 K are reported. The lattice vectorsa andb decrease linearly with temperature whilec shows non-linearity above 180 K, indicating some type of phase transition. Cooling does change the myoglobin structure but only within the structural distribution as determined by individual x 2 at room temperature. Two residues showed significant alternative positions for sidechains at higher temperatures while only one position is occupied at low temperatures. In the case of LEU 61 a jump between different positions of the side-chain reduces the potential barrier for the entrance of the O2 molecule to the heme pocket.The mean square displacements, x 2, of the individual residues decrease linearly with temperature in most cases, indicating a parabolic envelope for the potential responsible for motions. A separation of rotational and translational disorder of the entire molecule is discussed. Comparison with Mössbauer spectroscopy indicates that protein dynamics on a time scale faster than 10-7 s is not simply a harmonic process. Extrapolation of the structural distributions toT=0 K shows that a large zero point distribution of the myoglobin structure exists, thus proving that there is no absolute energy minimum for one well defined conformation.Dedicated to Prof. H. Frauenfelder on his 65th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号