共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Alles 《Biofouling》2013,29(5):469-480
Fouling release (FR) coatings are increasingly applied as an environmentally benign alternative for controlling marine biofouling. As the technology relies on removing fouling by water currents created by the motion of ships, weakening of adhesion of adherent organisms is the key design goal for improved coatings. In this paper, a microfluidic shear force assay is used to quantify how easily diatoms can be removed from surfaces. The experimental setup and the optimization of the experimental parameters to study the adhesion of the diatom Navicula perminuta are described. As examples of how varying the physico-chemical surface properties affects the ability of diatoms to bind to surfaces, a range of hydrophilic and hydrophobic self-assembled monolayers was compared. While the number of cells that attached (adhered) was barely affected by the coatings, the critical shear stress required for their removal from the surface varied significantly. 相似文献
2.
Conjugates to two thermoprecipitating polymers, poly(N-vinyl caprolactam) and poly(N-isopropylacrylmide), with soybean trypsin inhibitor, Cibacron Blue 3GA, Cu-iminodiacetic acid, and p-aminobenzamidine were synthesized. The interaction of these conjugates with trypsin and lactate dehydrogenase was studied. Coupling of the ligand to a polymer resulted in a 100-1000-fold decrease in enzyme-affinity. Rough theoretical estimates revealed that a successful affinity precipitation required that the binding of a target protein and a ligand coupled to a polymer have binding constants on the order of 10(-7)-10(-8) M. Such strong affinity of low molecular weight ligands that can provide binding constants of 10(-9)-10(-11) M or alternatively multipoint attachment of the target protein molecule. The ligand in the ligand-polymer conjugate is still accessible to the protein after thermoprecipitation, and the latter can bind with the particle of the dispersion of thermoprecipitated ligand-polymer precipitate may result in stripping of enzyme molecules from the surface of the particles. (c) 1993 Wiley & Sons, Inc. 相似文献
3.
葡萄糖对表皮葡萄球菌生物被膜形成的影响及调节机制的研究 总被引:3,自引:0,他引:3
生物被膜(Biofilm)是条件致病菌表皮葡萄球菌(Staphylococcusepidermidis)的主要致病因素,生物被膜的形成依赖多糖PIA合成,合成PIA的糖基转移酶由icaADBC基因编码。以生物被膜形成能力不同的菌株为对象,通过研究不同环境对生物被膜形成、细菌总糖量及相关基因表达的变化,探索外界环境对生物被膜形成的影响及葡萄糖对生物被膜诱导的分子机制。有利于生物被膜形成培养条件促进生物被膜形成及多糖的表达,葡萄糖能诱导ica基因的表达和生物被膜形成,ica基因的反义寡核苷酸(ODN)能对抗葡萄糖的作用;葡萄糖作用下不同生长周期生物被膜形成相关基因ica、icaR、AtlE表达不同。表皮葡萄球菌生物被膜的形成与细菌糖代谢有关,葡萄糖通过上调ica表达诱导生物膜形成,但不需要ica基因的持续表达;葡萄糖的诱导作用不是直接通过调节AtlE和icaR基因来实现的 相似文献
4.
Stem bromelain was covalently coupled to a thermosensitive polymer of N-isopropylacrylamide (p(NIPAm)) either through the
amino groups of the enzyme (randomly coupled) or via the lone oligosaccharide chain (uniformly coupled). The enzyme coupled
via the oligosaccharide chain exhibited better access to the substrate casein as compared to the preparation in which the
amino groups formed the point of contact between the enzyme and the polymer. Native bromelain exhibited a pH optimum of 8.0
and a broad pH-activity profile. The polymer-coupled preparations exhibited broader pH-activity profiles and shifting of pH
optimum to 10.0 at 35°C. At 25°C, the shifting of pH optimum was observed for the randomly coupled enzyme only. The temperature-activity
profiles of bromelain coupled to p(NIPAm) also showed appreciable broadening and the preparations retained greater fraction
of maximum activity above the temperature optimum. The optimum temperature of the uniformly oriented preparation also rose
to 70°C. Inactivation rates of the polymer-coupled bromelain were remarkably low at 60°C as compared to the native protease,
and binding of antibromelain antibodies improved the resistance to inactivation of the polymer-coupled preparations. The cleavage
patterns of hemoglobin and IgG by the native bromelain and the polymer-coupled preparations were comparable.
Published in Russian in Biokhimiya, 2007, Vol. 72, No. 3, pp. 375–382. 相似文献
5.
Stephanie M. Bennett John A. Finlay Nikhil Gunari David D. Wells Anne E. Meyer Gilbert C. Walker 《Biofouling》2013,29(2):235-246
Xerogel films with uniform surface topogrophy, as determined by scanning electron microscopy, atomic force microscopy (AFM), and time-of-flight secondary ion mass spectrometry, were prepared from aminopropylsilyl-, fluorocarbonsilyl-, and hydrocarbonsilyl- containing precursors. Young's modulus was determined from AFM indentation measurements. The xerogel coatings gave reduced settlement of zoospores of the marine fouling alga Ulva compared to a poly(dimethylsiloxane) elastomer (PDMSE) standard. Increased settlement correlated with decreased water wettability as measured by the static water contact angle, θWs, or with decreased polar contribution (γP) to the surface free energy (γS) as measured by comprehensive contact angle analysis. The strength of attachment of 7-day sporelings (young plants) of Ulva on several of the xerogels was similar to that on PDMSE although no overall correlation was observed with either θWs or γS. For sporelings attached to the fluorocarbon/hydrocarbon-modified xerogels, the strength of attachment increased with increased water wettability. The aminopropyl-modified xerogels did not follow this trend. 相似文献
6.
Vi Khanh Truong Stuart Rundell Rimma Lapovok Yuri Estrin James Y. Wang Christopher C. Berndt David G. Barnes Christopher J. Fluke Russell J. Crawford Elena P. Ivanova 《Applied microbiology and biotechnology》2009,83(5):925-937
The influence of the ultrafine crystallinity of commercial purity grade 2 (as-received) titanium and titanium modified by
equal channel angular pressing (modified titanium) on bacterial attachment was studied. A topographic profile analysis of
the surface of the modified titanium revealed a complex morphology of the surface. Its prominent micro- and nano-scale features
were 100–200-nm-scale undulations with 10–15 μm spacing. The undulating surfaces were nano-smooth, with height variations
not exceeding 5–10 nm. These surface topography characteristics were distinctly different from those of the as-received samples,
where broad valleys (up to 40–60 μm) were detected, whose inner surfaces exhibited asperities approximately 100 nm in height
spaced at 1–2 μm. It was found that each of the three bacteria strains used in this study as adsorbates, viz. Staphylococcus aureus CIP 68.5, Pseudomonas aeruginosa ATCC 9025 and Escherichia coli K12, responded differently to the two types of titanium surfaces. Extreme grain refinement by ECAP resulted in substantially
increased numbers of cells attached to the surface compared to as-received titanium. This enhanced degree of attachment was
accompanied with an increased level of extracellular polymeric substances (EPS) production by the bacteria.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
7.
The adhesion of Staphylococcus epidermidis, Escherichia coli, and Candida albicans on mucin coatings was evaluated to explore the feasibility of using the coating to increase the infection resistance of biomaterials. Coatings of bovine submaxillary mucin (BSM) were deposited on a base layer consisting of a poly(acrylic acid-b-methyl methacrylate) (PAA-b-PMMA) diblock copolymer. This bi-layer system exploits the mucoadhesive interactions of the PAA block to aid the adhesion of mucin to the substratum, whereas the PMMA block prevents dissolution of the coating in aqueous environments. The thickness of the mucin coating was adjusted by varying the pH of the solution from which it was deposited. Thin mucin coatings decreased the numbers of bacteria but increased the numbers of C. albicans adhering to the copolymer and control surfaces. Increasing the mucin film thickness resulted in a further lowering of the density of adhering S. epidermidis cells, but it did not affect the density of E. coli. In contrast, the density of C. albicans increased with an increase in mucin thickness. 相似文献
8.
Diatoms are a major component of the slime layers that form on artificial surfaces in marine environments. In this article, the role played by diatoms during the pioneering stages of colonization of three marine antifouling (AF) coatings, viz Intersmooth 360®, Super Yacht 800® and a fouling-release (FR) coating Intersleek 700®, was investigated. The study was conducted over three distinct seasons in two very different marine environments in Australia, ie temperate Williamstown, Victoria and tropical Cairns, Queensland. Diatom fouling occurred more rapidly on the FR coating Intersleek 700, compared to both biocidal AF paints. However, colonization by diatoms on all three coatings was generally slow during the 16-day study. Benthic diatoms do not subsist by floating around in the water column, rather they only gain the opportunity to colonize new surfaces when they either voluntarily release or are displaced from their benthic habitat, thereafter entering the water column where the opportunity to adhere to a new surface presents itself. However, once settled, fouling diatoms grow exponentially from the site of attachment, spreading out until they populate large areas of the surface. This mode of surface colonization correlates more with an ‘infection’ type, epidemiology model, a mechanism that accounts for the colonization of significant regions of the coating surface from a single fouling diatom cell, forming ‘clonal patches’. This is in comparison to the bacterial colonization of the surface, which exhibits far more rapid recruitment and growth of cells on the substratum surface. Therefore, it is hypothesized that fouling diatoms may be characterized more by their ability to adhere and grow on surfaces already modified by bacterial biofilms, rather than on their strength of adhesion. Cell morphology and the ability to avoid shear may also be an important factor. 相似文献
9.
By adsorbing poly(N-isopropylacrylamide) (PNIPAAm) from an aqueous solution onto oxidised polystyrene without the need for
grafting the polymer to the surface, we showed here that cells(CHO-K1) adhere and grow well at 37 °C and are detached by lowering
the temperature to 10 °C without any other deleterious treatment. Both bacterial culture grade polystyrene Petri dishes and
polystyrene beads (120 to 250μm diameters) commercially available used in static conditions of growth were tested with similar
results. The contact angle of modified Petri dishes with a water droplet increases from 36 to 58° when the temperature is
raised from 25 to 37 °C indicating change in hydrophilicity of the surface as a function of temperature.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
10.
生物被膜(Biofilm)是条件致病菌表皮葡萄球菌(Staphylococcusepidermidis)的主要致病因素,生物被膜的形成依赖多糖PIA的合成,PIA合成与细菌糖代谢相关。通过研究葡萄糖类似物甲基葡萄糖(MethylDglucoside,MG)对生物被膜的形成及相关基因表达的影响,考察生物被膜形成的调控机制并寻找抑制生物被膜形成的方法。甲基葡萄糖能抑制97337株生物被膜的形成,而且不同浓度的甲基葡萄糖对生物膜作用不同。甲基葡萄糖对97337株生物被膜形成的早期的粘附有较强的抑制作用;不同浓度的甲基葡萄糖处理后对ica和AtlE基因的mRNA表达水平影响不大,但能诱导agr基因的表达,这与甲基葡萄糖处理不同时间后的结果一致;而且甲基葡萄糖处理后97337的表面相关蛋白的组成明显改变。甲基葡萄糖对生物膜的抑制并不直接由于它对生长的抑制,它对细菌生长和生物被膜形成的抑制与其在细菌糖代谢中的竞争性相关;甲基葡萄糖能通过调控agr基因的表达改变细菌表面从而抑制97337的早期粘附和生物被膜的形成,但没有通过调控icaADBC、icaR的表达抑制生物膜的形成,可能与其对合成PIA相关糖基转移酶的竞争性抑制相关。 相似文献
11.
Michael R. Hibbs Bernadette A. Hernandez-Sanchez Justin Daniels Shane J. Stafslien 《Biofouling》2013,29(7):613-624
A series of polysulfone and polyacrylate-based zwitterionic coatings were prepared on epoxy-primed aluminum substrata and characterized for their antifouling (AF) and fouling-release (FR) properties towards marine bacteria, microalgae and barnacles. The zwitterionic polymer coatings provided minimal resistance against bacterial biofilm retention and microalgal cell attachment, but facilitated good removal of attached microbial biomass by exposure to water-jet apparatus generated hydrodynamic shearing forces. Increasing the ion content of the coatings improved the AF properties, but required a stronger adhesive bond to the epoxy-primed aluminum substratum to prevent coating swelling and dissolution. Grafted poly(sulfobetaine) (gpSBMA), the most promising zwitterionic coating identified from microfouling evaluations, enabled the removal of four out of five barnacles reattached to its surface without incurring damage to their baseplates. This significant result indicated that gpSBMA relied predominately on its surface chemistry for its FR properties since it was very thin (~1–2 µm) relative to commercial coating standards (>200 µm). 相似文献
12.
John A. Finlay Stephanie M. Bennett Lenora H. Brewer Anastasiya Sokolova Gemma Clay Nikhil Gunari 《Biofouling》2013,29(6):657-666
Previous work has shown that organosilica-based xerogels have the potential to control biofouling. In this study, modifications of chemistry were investigated with respect to their resistance to marine slimes and to settlement of barnacle cyprids. Adhesion force measurements of bovine serum albumin (BSA)-coated atomic force microscopy (AFM) tips to xerogel surfaces prepared from aminopropylsilyl-, fluorocarbonsilyl-, and hydrocarbonsilyl-containing precursors, indicated that adhesion was significantly less on the xerogel surfaces in comparison to a poly(dimethylsiloxane) elastomer (PDMSE) standard. The strength of adhesion of BSA on the xerogels was highest on surfaces with the highest and the lowest critical surface tensions, γC and surface energies, γS, and duplicated the ‘Baier curve’. The attachment to and removal of cells of the diatom Navicula perminuta from a similar series of xerogel surfaces were examined. Initial attachment of cells was comparable on all of the xerogel surfaces, but the percentage removal of attached cells by hydrodynamic shear stress increased with γC and increased wettability as measured by the static water contact angle, θWs, of the xerogel surfaces. The percentage removal of cells of Navicula was linearly correlated with both properties (R 2 = 0.74 for percentage removal as a function of θWs and R 2 = 0.69 for percentage removal as a function of γC). Several of the aminopropylsilyl-containing xerogels showed significantly greater removal of Navicula compared to a PDMSE standard. Cypris larvae of the barnacle B. amphitrite showed preferred settlement on hydrophilic/higher energy surfaces. Settlement was linearly correlated with θWs (R 2 = 0.84) and γC (R 2 = 0.84). Hydrophilic xerogels should prove useful as coatings for boats in regions where fouling is dominated by microfouling (protein and diatom slimes). 相似文献
13.
《Bioorganic & medicinal chemistry》2020,28(3):115280
A nitroreductase (NTR) responsive fluorescent probe, Na-NO2, comprising p-nitrobenzyl as the unique recognition group and 1,8-naphthalimide as fluorophore, was synthesized. Na-NO2 showed remarkable fluorescence “turn-on” signal in the presence of NTR under DMSO/H2O (1:19, v/v) buffered with PBS (pH = 7) solution in the presence of NADH (300 µM). Furthermore, the probe has a low detection limit down to 3.4 ng/mL and it is very sensitive towards the NTR in Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), normal and tumor cells such as HL-7702, HepG-2 and MCF-7. 相似文献
14.
Biofilm control remains a challenge to food safety. A well-studied non-fouling coating involves codeposition of polytetrafluoroethylene (PTFE) during electroless plating. This coating has been reported to reduce foulant build-up during pasteurization, but opportunities remain in demonstrating its efficacy in inhibiting biofilm formation. Herein, the initial adhesion, biofilm formation, and removal kinetics of Bacillus cereus on Ni-PTFE-modified stainless steel (SS) are characterized. Coatings lowered the surface energy of SS and reduced biofilm formation by > 2 log CFU cm?2. Characterization of the kinetics of biofilm removal during cleaning demonstrated improved cleanability on the Ni-PTFE coated steel. There was no evidence of biofilm after cleaning by either solution on the Ni-PTFE coated steel, whereas more than 3 log and 1 log CFU cm?2 of bacteria remained on the native steel after cleaning with water and an alkaline cleaner, respectively. This work demonstrates the potential application of Ni-PTFE non-fouling coatings on SS to improve food safety by reducing biofilm formation and improving the cleaning efficiency of food processing equipment. 相似文献
15.
Giuseppantonio Maisetta Lucia Grassi Mariagrazia Di Luca Silvia Bombardelli Chiara Medici Franca Lisa Brancatisano 《Biofouling》2016,32(7):787-800
In search of new antimicrobials with anti-biofilm potential, in the present study activity of the frog-skin derived antimicrobial peptide temporin 1Tb (TB) against Staphylococcus epidermidis biofilms was investigated. A striking ability of TB to kill both forming and mature S. epidermidis biofilms was observed, especially when the peptide was combined with cysteine or EDTA, respectively. Kinetics studies demonstrated that the combination TB/EDTA was active against mature biofilms already after 2–4-h exposure. A double 4-h exposure of biofilms to TB/EDTA further increased the therapeutic potential of the same combination. Of note, TB/EDTA was able to eradicate S. epidermidis biofilms formed in vitro on silicone catheters. At eradicating concentrations, TB/EDTA did not cause hemolysis of human erythrocytes. The results shed light on the anti-biofilm properties of TB and suggest a possible application of the peptide in the lock therapy of catheters infected with S. epidermidis. 相似文献
16.
The purpose of this study was to investigate the effect of 2 additives, poly(ethylene glycol (PEG) 1000 and 1,2,3-tridecanoyl glycerol (tricaprin), on the physico-chemical characteristics and in vitro release of a model protein, bovine serum albumin (BSA), form poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres. BSA-loaded microspheres were prepared by the double emulsion solvent evaporation method. Additives were incorporated into microspheres to modify the release of protein. The addition of PEG 1000 and tricaprin changed the surface characteristics of microspheres from smooth and nonporous to porous and dimpled, respectively. The in vitro release profiles showed that the additives significantly (P<0.05) increased the early-stage release of BSA from microspheres. 相似文献
17.
A systematic study is reported on the physicochemical characteristics of two branched chain polymers (based on a poly-L-lysine backbone) with a general formula poly[Lys-(DL-Alam-Xi)], where X = Orn (OAK) or N-acetyl-Glu (Ac-EAK) and m approximately equal to 3, using surface pressure and fluorescence polarization methods. These data are compared with those of the linear poly(L-Lys) from which OAK and Ac-EAK are derived. These two polymers show a moderate surface activity, able to form stable monomolecular layers at the air-water interface. Poly(L-Lys), the most hydrophilic, has the lowest surface activity. The interaction of these polymers with phospholipid bilayers either neutral or negatively charged was studied with vesicles labeled with two fluorescent probes: ANS and DPH. Results indicate that these polymers are able to accommodate in their internal structure, mainly through electrostatic interactions, a certain amount of ANS marker molecules, but fluorescence increases of the ANS-polypeptide complexes were so low that its influence in further polarization measurements could be discarded. After interaction with liposomes, these polymers induce an increase in the polarization of the probes, thus indicating a rigidification of the bilayers. Electrostatic forces seem to be very important in this interaction; cationic polymers are clearly more active, with PG-containing liposomes, than Ac-EAK. Moreover, in these assays poly(L-Lys) behaves as the more active compound. This fact is probably due to its major ability to form alpha-helical structures that could insert easily in the bilayers. These results indicate that the polymeric structures studied can be used as carriers for biologically active molecules, because their interactions with bilayers remain soft and have a positive effect on the stability of the membranes. 相似文献
18.
Park MR Kim HW Hwang CS Han KO Choi YJ Song SC Cho MH Cho CS 《The journal of gene medicine》2008,10(2):198-207
BACKGROUND: Polyethylenimine (PEI) is toxic although it is one of the most successful and widely used gene delivery polymers with the aid of the proton sponge effect. Therefore, development of new novel gene delivery carriers having high efficiency with less toxicity is necessary. METHODS: In this study, a degradable poly(ester amine) carrier based on poly(ethylene glycol) diacrylate (PEGDA) and low molecular weight linear PEI was prepared. Furthermore, we compared the gene expression of the polymer/DNA complexes using two delivery methods: intravenous administration as an invasive method and aerosol as a non-invasive method. RESULTS: The synthesized polymer had a relatively small molecular weight (MW = 7980) with 25 h half-life in vitro. The polymer/DNA complexes were formed at an N/P ratio of 9. The particle sizes and zeta-potentials of the complexes were dependent on N/P ratio. Compared to PEI 25K, the newly synthesized polymer exhibited high transfection efficiency with low toxicity. Poly(ester amine)-mediated gene expression in the lung and liver was higher than that of the conventional PEI carrier. Interestingly, non-invasive aerosol delivery induced higher gene expression in all organs compared to intravenous method in an in vivo mice study. Such an expressed gene via a single aerosol administration in the lung and liver remained unchanged for 7 days. CONCLUSIONS: Our study demonstrates that poly(ester amine) may be applied as an useful gene carrier. 相似文献
19.
Cheol Joo Kim Eri Hara Naoki Watabe Isao Hara Shunsaku Kimura 《Journal of peptide science》2017,23(12):889-898
Poly(sarcosine) displayed on polymeric micelle is reported to trigger a T cell‐independent type2 reaction with B1a cells in the mice to produce IgM and IgG3 antibodies. In addition to polymeric micelle, three kinds of vesicles displaying poly(sarcosine) on surface were prepared here to evaluate the amounts and avidities of IgM and IgG3, which were produced in mice, to correlate them with physical properties of the molecular assemblies. The largest amount of IgM was produced after twice administrations of a polymeric micelle of 35 nm diameter ( G1 ). On the other hand, the production amount of IgG3 became the largest after twice administrations of G3 (vesicle of 229 nm diameter) or G4 (vesicle of 85 nm diameter). The augmented avidity of IgG3 after the twice administrations compared with that at the single administration was the highest with G3 . These differences in immune responses are discussed in terms of surface density of poly(sarcosine) chains, nanoparticle size, hydrophobic component of poly(L‐lactic acid) or (Leu‐ or Val‐Aib)n, and membrane elasticity of the nanoparticles. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
20.
Effect of hydraulic retention time on membrane fouling and biomass characteristics in submerged membrane bioreactors 总被引:2,自引:1,他引:1
In this paper, three identical membrane bioreactors (MBRs) were operated in parallel in order to specify the influence mechanism
of hydraulic retention time (HRT) on MBR. The results showed that the removal efficiency of chemical oxygen demand (COD) was
stable though it decreased slightly as HRT decreased, but biomass activity and dissolved oxygen (DO) concentration in sludge
suspension decreased as HRT decreased. The filamentous bacteria grew easily with decreasing HRT. The extracellular polymeric
substances (EPS) concentration and sludge viscosity increased significantly as filamentous bacteria excessively grew. The
over growth of filamentous bacteria, the increase of EPS and the decrease of shear stress led to the formation of large and
irregular flocs. Furthermore, the mixed liquid suspended solids (MLSS) concentration and sludge viscosity increased significantly
as HRT decreased. The results also indicated that sludge viscosity was the predominant factor that affecting hydrodynamic
conditions of MBR systems. 相似文献