首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elucidation of the mechanisms by which diverse species survive and interact in drinking water (DW) biofilm communities may allow the identification of new biofilm control strategies. The purpose of the present study was to investigate the effects of metabolite molecules produced by bacteria isolated from DW on biofilm formation. Six opportunistic bacteria, viz. Acinetobacter calcoaceticus, Burkholderia cepacia, Methylobacterium sp., Mycobacterium mucogenicum, Sphingomonas capsulata and Staphylococcus sp. isolated from a drinking water distribution systems (DWDS) were used to form single and multispecies biofilms in the presence and absence of crude cell-free supernatants produced by the partner bacteria. Biofilms were characterized in terms of mass and metabolic activity. Additionally, several physiological aspects regulating interspecies interactions (sessile growth rates, antimicrobial activity of cell-free supernatants, and production of iron chelators) were studied to identify bacterial species with biocontrol potential in DWDS. Biofilms of Methylobacterium sp. had the highest growth rate and M. mucogenicum biofilms the lowest. Only B. cepacia was able to produce extracellular iron-chelating molecules. A. calcoaceticus, B. cepacia, Methylobacterium sp. and M. mucogenicum biofilms were strongly inhibited by crude cell-free supernatants from the other bacteria. The crude cell-free supernatants of M. mucogenicum and S. capsulata demonstrated a high potential for inhibiting the growth of counterpart biofilms. Multispecies biofilm formation was strongly inhibited in the absence of A. calcoaceticus. Only crude cell-free supernatants produced by B. cepacia and A. calcoaceticus had no inhibitory effects on multispecies biofilm formation, while metabolite molecules of M. mucogenicum showed the most significant biocontrol potential.  相似文献   

2.
A model biofilm, formed of multiple species from environmental drinking water, including opportunistic pathogens, was created to explore the tolerance of multi-species biofilms to chlorine levels typical of water-distribution systems. All species, when grown planktonically, were killed by concentrations of chlorine within the World Health Organization guidelines (0.2–5.0?mg?l?1). Higher concentrations (1.6–40-fold) of chlorine were required to eradicate biofilm populations of these strains, ~70% of biofilms tested were not eradicated by 5.0?mg?l?1 chlorine. Pathogenic bacteria within the model multi-species biofilms had an even more substantial increase in chlorine tolerance; on average ~700–1100?mg?l?1 chlorine was required to eliminate pathogens from the biofilm, 50–300-fold higher than for biofilms comprising single species. Confocal laser scanning microscopy of biofilms showed distinct 3D structures and multiple cell morphologies and arrangements. Overall, this study showed a substantial increase in the chlorine tolerance of individual species with co-colonization in a multi-species biofilm that was far beyond that expected as a result of biofilm growth on its own.  相似文献   

3.
This study was performed in order to characterize the relationship between adhesion and biofilm formation abilities of drinking water-isolated bacteria (Acinetobacter calcoaceticus, Burkholderia cepacia, Methylobacterium sp., Mycobacterium mucogenicum, Sphingomonas capsulata and Staphylococcus sp.). Adhesion was assessed by two distinct methods: thermodynamic prediction of adhesion potential by quantifying hydrophobicity and the free energy of adhesion; and by microtiter plate assays. Biofilms were developed in microtiter plates for 24, 48 and 72 h. Polystyrene (PS) was used as adhesion substratum. The tested bacteria had negative surface charge and were hydrophilic. PS had negative surface charge and was hydrophobic. The free energy of adhesion between the bacteria and PS was > 0 mJ/m2 (thermodynamic unfavorable adhesion). The thermodynamic approach was inappropriate for modelling adhesion of the tested drinking water bacteria, underestimating adhesion to PS. Only three (B. cepacia, Sph. capsulata and Staphylococcus sp.) of the six bacteria were non-adherent to PS. A. calcoaceticus, Methylobacterium sp. and M. mucogenicum were weakly adherent. This adhesion ability was correlated with the biofilm formation ability when comparing with the results of 24 h aged biofilms. Methylobacterium sp. and M. mucogenicum formed large biofilm amounts, regardless the biofilm age. Given time, all the bacteria formed biofilms; even those non-adherents produced large amounts of matured (72 h aged) biofilms. The overall results indicate that initial adhesion did not predict the ability of the tested drinking water-isolated bacteria to form a mature biofilm, suggesting that other events such as phenotypic and genetic switching during biofilm development and the production of extracellular polymeric substances (EPS), may play a significant role on biofilm formation and differentiation. This understanding of the relationship between adhesion and biofilm formation is important for the development of control strategies efficient in the early stages of biofilm development.  相似文献   

4.
Microbial biofilm formation in dental unit water lines (DUWL) is a phenomenon that has been recognized for nearly four decades. Water delivered by DUWL can harbor high numbers of bacteria, including opportunistic pathogens. Biofilms on tubing within DUWL may serve as a reservoir for these microorganisms and should therefore be controlled. In this study, the effects of eight biocides were monitored on DUWL biofilms individually and in combination by epifluorescence microscopy and total viable counts (TVC). The effects of sodium dodecyl sulphate (SDS), hydrogen peroxide (H2O2), sodium hypochlorite (NaOCl), phenol (Phe), Tween 20 (Tw 20), ethylenediaminetetraacetic acid (EDTA), chlorohexidine gluconate (CHX), and povidine iodine (PI) were tested on DUWL biofilms alone and in combination. PI was found to have negligible effects on biofilm removal either applied alone or in combined form with CHX. Applying all biocides simultaneously did not completely eliminate viable bacteria nor did they remove biofilm. Overall, when combined, the biocides performed better than singly applied products. The most effective biocides were NaOCl and Phe (both alone and in combination).  相似文献   

5.
Abstract

The persistence of microorganisms as biofilms on dry surfaces resistant to the usual terminal cleaning methods may pose an additional risk of transmission of infections. In this study, the Centre for Disease Control (CDC) dry biofilm model (DBM) was adapted into a microtiter plate format (Model 1) and replicated to create a novel in vitro model that replicates conditions commonly encountered in the healthcare environment (Model 2). Biofilms of Staphylococcus aureus grown in the two models were comparable to the biofilms of the CDC DBM in terms of recovered log10 CFU well?1. Assessment of the antimicrobial tolerance of biofilms grown in the two models showed Model 2 a better model for biofilm formation. Confirmation of the biofilms’ phenotype with an extracellular matrix deficient S. aureus suggested stress tolerance through a non-matrix defined mechanism in microorganisms. This study highlights the importance of conditions maintained in bacterial growth as they affect biofilm phenotype and behaviour.  相似文献   

6.
Abstract

This study systematically assessed the inactivation mechanism on Staphylococcus aureus biofilms by a N2 atmospheric-pressure plasma jet and the effect on the biofilm regeneration capacity from the bacteria which survived, and their progenies. The total bacterial populations were 7.18?±?0.34 log10 CFU ml?1 in biofilms and these were effectively inactivated (>5.5-log10 CFU ml?1) within 30?min of exposure. Meanwhile, >80% of the S. aureus biofilm cells lost their metabolic capacity. In comparison, ~20% of the plasma-treated bacteria entered a viable but non-culturable state. Moreover, the percentage of membrane-intact bacteria declined to ~30%. Scanning electron microscope images demonstrated cell shrinkage and deformation post-treatment. The total amount of intracellular reactive oxygen species was observed to have significantly increased in membrane-intact bacterial cells with increasing plasma dose. Notably, the N2 plasma treatment could effectively inhibit the biofilm regeneration ability of the bacteria which survived, leading to a long-term phenotypic response and dose-dependent inactivation effect on S. aureus biofilms, in addition to the direct rapid bactericidal effect.  相似文献   

7.
Controlling bacterial biofilms is necessary for food safety and industrial processing in clean room environments. Our goal was to develop a method to quantitatively measure biofilm produced by pathogens under wet poultry production and processing conditions. Stainless steel and glass coupons were incubated in aqueous media containing reduced nutrients and exposed to Listeria monocytogenes under static temperature and humidity conditions. Samples were measured separately by biofilm assay and viable cell density, and then confirmed by spectrophotometry and microscopy. The biofilm assay resulted in different t groupings from the cell density. The mean from the biofilm assay was 0.50, and the error% was 0.595. The mean of the log10 density (cfu/cm2) was 5.90, and the standard deviation ranged from 0.127 to 0.438 on 24 coupons. The typical sequence of biofilm development, followed by microscopy of biofilm grown on glass coupons, exhibited a change from dispersed single cells to an all-over pattern of clumps with few dispersed cells. L. monocytogenes formed biofilms on all of the substrata tested. Bacterial counts from planktonic cultures at 24, 48, 72, and 144 h confirmed that L. monocytogenes remained viable throughout the experiment and reached equilibrium between 6 and 24 h. The cell density log10/ml was 8.01, 8.03, 7.69, and 6.66, respectively; and the standard deviation ranged from 0.156 to 0.394. The data will be used to grow stable biofilms of Listeria spp. collected from the food processing environment for further study. This is the first use of the crystal violet assay for measurement of bacterial biofilms on stainless steel under these conditions. The methods tested are applicable to other bacteria and substrata.  相似文献   

8.
Abstract

Food wasted due to food spoilage remains a global challenge to the environmental sustainability and security of food supply. In food manufacturing, post-processing contamination of food can occur due to persistent bacterial biofilms, which can be resistant to conventional cleaning and sanitization. The objective was to characterize the efficacy of a polymeric coating in reducing Pseudomonas aeruginosa biofilm establishment and facilitating its removal. Viable cell density of a 48?h biofilm was reduced by 2.10 log cfu cm?2 on the coated surface, compared to native polypropylene. Confocal laser scanning and electron microscopy indicated reductions in mature biofilm viability and thickness on the coated material. The antifouling coating improved cleanability, with ~2.5 log cfu cm?2 of viable cells remaining after 105?min cleaning by water at 65?°C, compared to 4.5 log cfu cm?2 remaining on native polypropylene. Such coatings may reduce the persistence of biofilms in food processing environments, in support of reducing food spoilage and waste  相似文献   

9.
The effect of copper additions (Cu ranging from 0 to 30?µM) on the photosynthesis of three different microalgal biofilms was studied to identify the factors that cause sensitivity differences between benthic and pelagic algae. The response of biofilms which colonized artificial substrata in the River Meuse was compared with those of two laboratory-grown monospecific biofilms, one consisting of the diatom Synedra ulna, and the other composed of a filament-forming cyanobacterium, Oscillatoria sp. The photosynthetic yield ΦII (quantum efficiency of photosystem II) was studied with PAM (Pulse Amplitude Modulated) fluorimetry. S. ulna biofilms appeared to be the most sensitive to Cu, followed by the cyanobacteria, while natural biofilms, dominated by supposedly very sensitive diatom species such as Melosira varians and Diatoma vulgare, were the most resistant to Cu. In the highly productive biofilms, pH is suggested to play a role in lowering toxicity by helping the precipitation of cupric ions. Cu accumulation by the biofilms during the exposure period followed a linear relationship with Cu concentration, saturation not being observed; natural biofilms had an accumulation factor of 1–2.5?×?103 relative to the concentrations in the water, while the diatoms growing unattached to the substratum had a higher concentration factor, up to 4.9?×?103. It was concluded that the physical structure of the biofilm (package of cells and thickness), and not the species composition, was the main factor regulating the sensitivity of the biofilm to Cu toxicity during short-term exposures.  相似文献   

10.
Bacterial biofilms infect 2–4% of medical devices upon implantation, resulting in multiple surgeries and increased recovery time due to the very great increase in antibiotic resistance in the biofilm phenotype. This work investigates the feasibility of thermal mitigation of biofilms at physiologically accessible temperatures. Pseudomonas aeruginosa biofilms were cultured to high bacterial density (1.7?×?109 CFU cm?2) and subjected to thermal shocks ranging from 50°C to 80°C for durations of 1–30 min. The decrease in viable bacteria was closely correlated with an Arrhenius temperature dependence and Weibull-style time dependence, demonstrating up to six orders of magnitude reduction in bacterial load. The bacterial load for films with more conventional initial bacterial densities dropped below quantifiable levels, indicating thermal mitigation as a viable approach to biofilm control.  相似文献   

11.
This study evaluated predation with Bdellovibrio bacteriovorous and CO2 aerosol spraying to remove fluorescent Escherichia coli biofilms from silicon chips. Initial tests found that 7.5×105 viable E. coli cells were dispersed into the surrounding environment during aerosol treatment. The total number dispersed per test decreased to only 16 for predated biofilms. This is nearly 50,000-fold lower compared to untreated chips and 1000-fold lower compared to chips soaked in HEPES buffer only. Both scanning electron microscopy (SEM) and fluorescent microscopy analyses confirmed that predation alone did not completely eradicate the biofilm population. When used in conjunction with CO2 aerosols, however, no fluorescent signals remained and the SEM pictures showed a pristine surface devoid of bacteria. Consequently, this study demonstrates these two methods can be used with each other to significantly remove biofilms from surfaces while also significantly reducing the likelihood of human exposure to potential pathogens during their removal.  相似文献   

12.
Quantifying Salmonella Population Dynamics in Water and Biofilms   总被引:1,自引:0,他引:1  
Members of the bacterial genus Salmonella are recognized worldwide as major zoonotic pathogens often found to persist in non-enteric environments including heterogeneous aquatic biofilms. In this study, Salmonella isolates that had been detected repeatedly over time in aquatic biofilms at different sites in Spring Lake, San Marcos, Texas, were identified as serovars Give, Thompson, Newport and -:z10:z39. Pathogenicity results from feeding studies with the nematode Caenorhabditis elegans as host confirmed that these strains were pathogenic, with Salmonella-fed C. elegans dying faster (mean survival time between 3 and 4 days) than controls, i.e., Escherichia coli-fed C. elegans (mean survival time of 9.5 days). Cells of these isolates inoculated into water at a density of up to 106?ml?1 water declined numerically by 3 orders of magnitude within 2 days, reaching the detection limit of our quantitative polymerase chain reaction (qPCR)-based quantification technique (i.e., 103 cells ml?1). Similar patterns were obtained for cells in heterogeneous aquatic biofilms developed on tiles and originally free of Salmonella that were kept in the inoculated water. Cell numbers increased during the first days to more than 107 cells cm?2, and then declined over time. Ten-fold higher cell numbers of Salmonella inoculated into water or into biofilm resulted in similar patterns of population dynamics, though cells in biofilms remained detectable with numbers around 104 cells cm?2 after 4 weeks. Independent of detectability by qPCR, samples of all treatments harbored viable salmonellae that resembled the inoculated isolates after 4 weeks of incubation. These results demonstrate that pathogenic salmonellae were isolated from heterogeneous aquatic biofilms and that they could persist and stay viable in such biofilms in high numbers for some time.  相似文献   

13.
Understanding the dynamics of performance and bacterial community of biofilm under oligotrophic stress is necessary for the process optimization and risk management in biofilm systems for raw water pretreatment. In this study, biofilm obtained from a pilot-scale biofilm reactor was inoculated into a pilot-scale experimental tank for the treatment of oligotrophic raw water. Results showed that the removal of NH4 +–N was impaired in biofilm systems when influent NH4 +–N was less than 0.35 mg L?1 or NH4 +–N loading rate of less than 7.51 mg L?1 day?1. The dominant bacteria detected in biofilm of different carrier were obvious distinct from phylum to genus level under oligotrophic stress. The dominant bacteria in elastic stereo media carrier changed from Proteobacteria (51.1%) to Firmicutes (32.7%), while Proteobacteria was always dominant in suspended ball carrier after long-term operation under oligotrophic conditions. Oligotrophic stress largely decreased the functional bacteria for the removal of nitrogen and organics including many genera in Proteobacteria and Nitrospirae, but increased several genera with spore forming organisms or potential bacterial pathogens in ESM carrier mainly including Bacillus, Mycobacterium, Pseudomonas, etc.  相似文献   

14.
The link between nitritation success in a membrane‐aerated biofilm reactor (MABR) and the composition of the initial ammonia‐ and nitrite‐oxidizing bacterial (AOB and NOB) population was investigated. Four identically operated flat‐sheet type MABRs were initiated with two different inocula: from an autotrophic nitrifying bioreactor (Inoculum A) or from a municipal wastewater treatment plant (Inoculum B). Higher nitritation efficiencies (NO2‐N/NH4+‐N) were obtained in the Inoculum B‐ (55.2–56.4%) versus the Inoculum A‐ (20.2–22.1%) initiated reactors. The biofilms had similar oxygen penetration depths (100–150 µm), but the AOB profiles [based on 16S rRNA gene targeted real‐time quantitative PCR (qPCR)] revealed different peak densities at or distant from the membrane surface in the Inoculum B‐ versus A‐initiated reactors, respectively. Quantitative fluorescence in situ hybridization (FISH) revealed that the predominant AOB in the Inoculum A‐ and B‐initiated reactors were Nitrosospira spp. (48.9–61.2%) versus halophilic and halotolerant Nitrosomonas spp. (54.8–63.7%), respectively. The latter biofilm displayed a higher specific AOB activity than the former biofilm (1.65 fmol cell?1 h?1 versus 0.79 fmol cell?1 h?1). These observations suggest that the AOB and NOB population compositions of the inoculum may determine dominant AOB in the MABR biofilm, which in turn affects the degree of attainable nitritation in an MABR.  相似文献   

15.
The broad‐spectrum activity of antimicrobial peptides (AMPs) and low probability of development of host resistance make them excellent candidates as novel bio‐control agents. A number of AMPs are found to be cationic, and a small proportion of these are tryptophan‐rich. The puroindolines (PIN) are small, basic proteins found in wheat grains with proposed roles in biotic defence of seeds and seedlings. Synthetic peptides based on their unique tryptophan‐rich domain (TRD) display antimicrobial properties. Bacterial endospores and biofilms are highly resistant cells, with significant implications in both medical and food industries. In this study, the cationic PIN TRD‐based peptides PuroA (FPVTWRWWKWWKG‐NH2) and Pina‐M (FSVTWRWWKWWKG‐NH2) and the related barley hordoindoline (HIN) based Hina (FPVTWRWWTWWKG‐NH2) were tested for effects on planktonic cells and biofilms of the common human pathogens including Pseudomonas aeruginosa, Listeria monocytogenes and the non‐pathogenic Listeria innocua. All peptides showed significant bactericidal activity. Further, PuroA and Pina‐M at 2 × MIC prevented initial biomass attachment by 85–90% and inhibited >90% of 6‐h preformed biofilms of all three organisms. However Hina, with a substitution of Lys‐9 with uncharged Thr, particularly inhibited Listeria biofilms. The PIN based peptides were also tested against vegetative cells and endospores of Bacillus subtilis. The results provided evidence that these tryptophan‐rich peptides could kill B. subtilis even in sporulated state, reducing the number of viable spores by 4 log units. The treated spores appeared withered under scanning electron microscopy. The results establish the potential of these tryptophan‐rich peptides in controlling persistent pathogens of relevance to food industries and human health. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Current studies have indicated the utility of photodynamic therapy using porphyrins in the treatment of bacterial infections. Photoactivation of porphyrins results in the production of singlet oxygen (1O2) that damages biomolecules associated with cells and biofilms, e.g., proteins, polysaccharides, and DNA. The effect of a cationic porphryin on P. aeruginosa PAO1 biofilms was assessed by exposing static biofilms to 5,10,15,20-tetrakis(1-methyl-pyridino)-21H,23H-porphine, tetra-p-tosylate salt (TMP) followed by irradiation. Biofilms were visualized using confocal laser scanning microscopy (CLSM) and cell viability determined using the LIVE/DEAD BacLight viability assay and standard plate counts. At a concentration of 100 μM TMP, there was substantial killing of P. aeruginosa PAO1 wild-type and pqsA mutant biofilms with little disruption of the biofilm matrix or structure. Exposure to 225 μM TMP resulted in almost complete killing as well as the detachment of wild-type PAO1 biofilms. In contrast, pqsA mutant biofilms that contain less extracellular DNA remained intact. Standard plate counts of cells recovered from attached biofilms revealed a 4.1-log10 and a 3.9-log10 reduction in viable cells of wild-type PAO1 and pqsA mutant strains, respectively. Our results suggest that the action of photoactivated TMP on P. aeruginosa biofilms is two-fold: direct killing of individual cells within biofilms and detachment of the biofilm from the substratum. There was no evidence of porphyrin toxicity in the absence of light; however, biofilms pretreated with TMP without photoactivation were substantially more sensitive to tobramycin than untreated biofilms.  相似文献   

17.
Pediveliger larvae of Mytilus galloprovincialis were subjected to a series of bioassays to investigate the induction of metamorphosis using neuroactive compounds, K+, NH4 + and organic solvents. Growth and survival of post-larvae obtained using ethanol and methanol were also observed. Epinephrine, phenylephrine, clonidine and metanephrine induced larval metamorphosis at 10?6 to 10?4 M in both 24-h and continuous exposure assays. In 24-h exposure assays, α-methyldopa at 5×10?5 M and methoxyphenamine at 5×10?5?10?4 M induced 55?94% metamorphosis. Similarly, excess K+ at 3×10?2 M induced 39% metamorphosis and NH4 + at 1?5×10?2 M induced 63–78% metamorphosis. The EC50s of seven organic solvents ranged from 0.04 to 0.82 M. Post-larvae that metamorphosed using ethanol and methanol survived as juveniles and grew at the same rate as those from microbial biofilm. Thus, the above compounds can be useful inducers of metamorphosis for antifouling studies using larvae and juveniles of M. galloprovincialis.  相似文献   

18.
Bacteria indigenous to water distribution systems were used to grow multispecies biofilms within continuous-flow slide chambers. Six flow chambers were also inoculated with an Escherichia coli isolate obtained from potable water. The effect of disinfectants on bacterial populations was determined after exposure of established biofilms to 1 ppm of hypochlorous acid (ClOH) for 67 min or 4 ppm of monochloramine (NH2Cl) for 155 min. To test the ability of bacterial populations to initiate biofilm formation in the presence of disinfectants, we assessed the biofilms after 2 weeks of exposure to residual concentrations of 0.2 ppm of ClOH or 4 ppm of NH2Cl. Lastly, to determine the effect of recommended residual concentrations on newly established biofilms, we treated systems with 0.2 ppm of ClOH after 5 days of growth in the absence of disinfectant. Whole-cell in situ hybridizations using fluorescently tagged, 16S rRNA-targeted oligonucleotide probes performed on cryosectioned biofilms permitted the direct observation of metabolically active bacterial populations, including certain phylogenetic groups and species. The results of these studies confirmed the resistance of established bacterial biofilms to treatment with recommended levels of disinfectants. Specifically, Legionella pneumophila, E. coli, and β and δ proteobacteria were identified within biofilms both before and after treatment. Furthermore, although it was undetected using routine monitoring techniques, the observation of rRNA-containing E. coli within biofilms demonstrated not only survival but also metabolic activity of this organism within the model distribution systems. The persistence of diverse bacterial species within disinfectant-treated biofilms suggests that current testing practices underestimate the risk to immunocompromised individuals of contracting waterborne disease.  相似文献   

19.
Aims: To optimize ethidium monoazide (EMA) coupled with real‐time quantitative PCR (qPCR) and to evaluate its environmental applicability on quantifying viable legionellae in water and biofilm of cooling towers and hot water systems. Methods and Results: EMA (0·9–45·5 μg ml?1) and propidium monoazide (PMA, 0·9 and 2·3 μg ml?1) combined with qPCR (i.e. EMA‐qPCR and PMA‐qPCR, respectively) were applied to unheated and heated (70°C for 30 min) Legionella pneumophila to quantify viable cells, which was also simultaneously determined by BacLight Bacterial Viability kit with epifluorogenic microscopic enumeration (BacLight‐EM). The effects of nontarget microflora and sample matrix on the performance of EMA‐qPCR were also evaluated. In comparison with BacLight‐EM results, qPCR with EMA at 2·3 μg ml?1 was determined as the optimal EMA‐qPCR assay, which performed equally well as PMA‐qPCR for unheated Leg. pneumophila but better than PMA‐qPCR for heated Leg. pneumophila (P < 0·05). Moreover, qPCR with EMA at 2·3 μg ml?1 accurately quantified viable Leg. pneumophila, Legionella anisa and Legionella‐like amoebal pathogens 6 (LLAP 6) without interferences by heated legionellae, unheated nonlegionellae cells and cooling tower water matrix (P > 0·05). As for water and biofilm samples collected from cooling towers and hot water systems, the viable legionellae counts determined by EMA‐qPCR were mostly greater than the culturable counts by culture assay but consistently lower than the total cell counts quantified by qPCR. Conclusions: The qPCR with EMA at 2·3 μg ml?1 may accurately quantify viable legionellae (including fastidious LLAP 6) and Leg. pneumophila pretreated with superheating and is applicable for water and biofilm samples obtained from cooling towers and hot water systems. Significance and Impact of the Study: The EMA‐qPCR assay may be useful in environmental surveillance for viable legionellae and in evaluation of superheating efficacy against legionellae.  相似文献   

20.
Abstract

This study describes an ex vivo model that creates an environment for dermatophyte biofilm growth, with features that resemble those of in vivo conditions, designing a new panorama for the study of antifungal susceptibility. Regarding planktonic susceptibility, MIC ranges were 0.125-1?µg ml?1 for griseofulvin and 0.000097-0.25?µg ml?1 for itraconazole and terbinafine. sMIC50 ranges were 2->512?µg ml?1 for griseofulvin and 0.25->64?µg ml?1 for itraconazole and terbinafine. CLSM images demonstrated a reduction in the amount of cells within the biofilm, but hyphae and conidia were still observed and biofilm biomass was maintained. SEM analysis demonstrated a retraction in the biofilm matrix, but fungal structures and water channels were preserved. These results show that ex vivo biofilms are more tolerant to antifungal drugs than in vitro biofilms, suggesting that environmental and nutritional conditions created by this ex vivo model favor biofilm growth and robustness, and hence drug tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号