首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Food wasted due to food spoilage remains a global challenge to the environmental sustainability and security of food supply. In food manufacturing, post-processing contamination of food can occur due to persistent bacterial biofilms, which can be resistant to conventional cleaning and sanitization. The objective was to characterize the efficacy of a polymeric coating in reducing Pseudomonas aeruginosa biofilm establishment and facilitating its removal. Viable cell density of a 48?h biofilm was reduced by 2.10 log cfu cm?2 on the coated surface, compared to native polypropylene. Confocal laser scanning and electron microscopy indicated reductions in mature biofilm viability and thickness on the coated material. The antifouling coating improved cleanability, with ~2.5 log cfu cm?2 of viable cells remaining after 105?min cleaning by water at 65?°C, compared to 4.5 log cfu cm?2 remaining on native polypropylene. Such coatings may reduce the persistence of biofilms in food processing environments, in support of reducing food spoilage and waste  相似文献   

2.

Samples of floor materials used at present in different types of food plants were studied for their sensitivity to fouling and for their cleaning properties. A cleaning procedure close to that used in industry was carried out on seven different floor samples fouled with six industrial soils (e.g. green salad soil, reconstituted milk, and meat) and inoculated with spores of Bacillus stearothermophilus var. calidolactis as tracer. Sensitivity to fouling and the cleanability of the different floor materials were measured, and the results showed a significant difference between them. These differences were dependent upon the type of soil. Sensitivity to fouling and cleanability were not correlated with their slipping resistance characteristics.  相似文献   

3.
Sayer EJ  Powers JS  Tanner EV 《PloS one》2007,2(12):e1299
Aboveground litter production in forests is likely to increase as a consequence of elevated atmospheric carbon dioxide (CO(2)) concentrations, rising temperatures, and shifting rainfall patterns. As litterfall represents a major flux of carbon from vegetation to soil, changes in litter inputs are likely to have wide-reaching consequences for soil carbon dynamics. Such disturbances to the carbon balance may be particularly important in the tropics because tropical forests store almost 30% of the global soil carbon, making them a critical component of the global carbon cycle; nevertheless, the effects of increasing aboveground litter production on belowground carbon dynamics are poorly understood. We used long-term, large-scale monthly litter removal and addition treatments in a lowland tropical forest to assess the consequences of increased litterfall on belowground CO(2) production. Over the second to the fifth year of treatments, litter addition increased soil respiration more than litter removal decreased it; soil respiration was on average 20% lower in the litter removal and 43% higher in the litter addition treatment compared to the controls but litter addition did not change microbial biomass. We predicted a 9% increase in soil respiration in the litter addition plots, based on the 20% decrease in the litter removal plots and an 11% reduction due to lower fine root biomass in the litter addition plots. The 43% measured increase in soil respiration was therefore 34% higher than predicted and it is possible that this 'extra' CO(2) was a result of priming effects, i.e. stimulation of the decomposition of older soil organic matter by the addition of fresh organic matter. Our results show that increases in aboveground litter production as a result of global change have the potential to cause considerable losses of soil carbon to the atmosphere in tropical forests.  相似文献   

4.
Aims: The results from European standard disinfectant tests are used as one basis to approve the use of disinfectants in Europe. The design of these laboratory‐based tests should thus simulate as closely as possible the practical conditions and challenges that the disinfectants would encounter in use. No evidence is available that the organic and microbial loading in these tests simulates actual levels in the food service sector. Methods and Results: Total organic carbon (TOC) and total viable count (TVC) were determined on 17 visibly clean and 45 visibly dirty surfaces in two restaurants and the food preparation surfaces of a large retail store. These values were compared to reference values recovered from surfaces soiled with the organic and microbial loading, following the standard conditions of the European Surface Test for bactericidal efficacy, EN 13697. Conclusions: The TOC reference values for clean and dirty conditions were higher than the data from practice, but cannot be regarded as statistical outliers. This was considered as a conservative assessment; however, as additional nine TOC samples from visibly dirty surfaces were discarded from the analysis, as their loading made them impossible to process. Similarly, the recovery of test organisms from surfaces contaminated according to EN 13697 was higher than the TVC from visibly dirty surfaces in practice; though they could not be regarded as statistical outliers of the whole data field. No correlation was found between TVC and TOC in the sampled data, which re‐emphasizes the potential presence of micro‐organisms on visibly clean surfaces and thus the need for the same degree of disinfection as visibly dirty surfaces. Significance and Impact of the Study: The organic soil and the microbial burden used in EN disinfectant standards represent a realistic worst‐case scenario for disinfectants used in the food service and food‐processing areas.  相似文献   

5.
Harvesting of corn stover (plant residues) for cellulosic ethanol production must be balanced with the requirement for returning plant residues to agricultural fields to maintain soil structure, fertility, crop protection, and other ecosystem services. High rates of corn stover removal can be associated with decreased soil organic matter (SOM) quantity and quality and increased highly erodible soil aggregate fractions. Limited data are available on the impact of stover harvesting on soil microbial communities which are critical because of their fundamental relationships with C and N cycles, soil fertility, crop protection, and stresses that might be imposed by climate change. Using fatty acid and DNA analyses, we evaluated relative changes in soil fungal and bacterial densities and fungal-to-bacterial (F:B) ratios in response to corn stover removal under no-till, rain-fed management. These studies were performed at four different US locations with contrasting soil-climatic conditions. At one location, residue removal significantly decreased F:B ratios. At this location, cover cropping significantly increased F:B ratios at the highest level of residue removal and thus may be an important practice to minimize changes in soil microbial communities where corn stover is harvested. We also found that in these no-till systems, the 0- to 5-cm depth interval is most likely to experience changes, and detectable effects of stover removal on soil microbial community structure will depend on the duration of stover removal, sampling time, soil type, and annual weather patterns. No-till practices may have limited the rate of change in soil properties associated with stover removal compared to more extensive changes reported at a limited number of tilled sites. Documenting changes in soil microbial communities with stover removal under differing soil-climatic and management conditions will guide threshold levels of stover removal and identify practices (e.g., no-till, cover cropping) that may mitigate undesirable changes in soil properties.  相似文献   

6.
王思琪  张利敏  刘月  陈羽彤 《生态学报》2023,43(8):3236-3246
根系与凋落物有机碳输入变化对土壤碳氮循环的影响已成为当前学界关注的热点,但冻融季不同有机碳输入方式将对土壤活性氮含量产生何种影响尚不明确。为此在春季具有明显冻融作用的温带森林设立凋落物去除、根系去除处理以代表仅根系有机碳输入方式、仅凋落物有机碳输入方式,并设置自然条件有机碳输入方式即保留根系及凋落物作为对照,多角度探究土壤微生物量氮、矿质氮动态变化。结果表明:(1)有机碳输入方式对土壤活性氮含量有重要影响:与自然条件下有机碳输入方式相比,仅根系输入处理使土壤微生物氮、总矿质氮含量升高10.5%、12.3%。(2)输入时长改变了有机碳输入方式对土壤活性氮含量的作用效果:长期单一有机碳输入使土壤微生物量氮含量下降,反应率值为0.451、0.422。(3)季节差异是影响有机碳输入方式对土壤活性氮含量作用效果的关键因素:仅根系有机碳输入在冻融季使总矿质氮含量上升,反应率值为0.404,生长季相反,呈下降趋势,其值为0.121。以上结果表明,有机碳输入方式对土壤活性氮含量有重要调控作用,且作用效果会受季节、输入时长等因素影响。  相似文献   

7.
Global climate and land use change are altering plant and soil microbial communities worldwide, particularly in arctic and alpine biomes where warming is accelerated. The widespread expansion of woody shrubs into historically herbaceous alpine plant zones is likely to interact with climate to affect soil microbial community structure and function; however, our understanding of alpine soil ecology remains limited. This study aimed to (i) determine whether the diversity and community composition of soil fungi vary across elevation gradients and to (ii) assess the impact of woody shrub expansion on these patterns. In the White Mountains of California, sagebrush (Artemisia rothrockii) shrubs have been expanding upwards into alpine areas since 1960. In this study, we combined observational field data with a manipulative shrub removal experiment along an elevation transect of alpine shrub expansion. We utilized next‐generation sequencing of the ITS1 region for fungi and joint distribution modelling to tease apart effects of the environment and intracommunity interactions on soil fungi. We found that soil fungal diversity declines and community composition changes with increasing elevation. Both abiotic factors (primarily soil moisture and soil organic C) and woody sagebrush range expansion had significant effects on these patterns. However, fungal diversity and relative abundance had high spatial variation, overwhelming the predictive power of vegetation type, elevation and abiotic soil conditions at the landscape scale. Finally, we observed positive and negative associations among fungal taxa which may be important in structuring community responses to global change.  相似文献   

8.
胥娇  李强 《微生物学报》2023,63(6):2153-2172
碳酸盐岩经风化作用并在地形、植被、气候、时间及生物等因素的影响下逐渐演替出黑色石灰土、棕色石灰土、黄色石灰土和红色石灰土。【目的】研究不同演替阶段石灰土颗粒态有机质(particulate organic matter, POM)和矿物结合态有机质(mineral-associated organic matter, MAOM)的微生物群落特征,为岩溶土壤有机质稳定机制研究提供理论依据。【方法】以广西弄岗国家级自然保护区的黑色石灰土、棕色石灰土、黄色石灰土和红色石灰土为研究对象,运用湿筛法将土壤有机质(soil organic matter, SOM)分为POM和MAOM,分析其理化性质以及微生物群落特征。【结果】石灰土演替过程中POM和MAOM的有机碳、总氮、交换性钙含量均呈下降趋势,且MAOM的C/N均大于POM,POM的C/P均大于MAOM。细菌α多样性在黑色石灰土POM和MAOM中最高,且四类石灰土MAOM的真菌多样性比POM要高。Acidobacteria、Proteobacteria、Ascomycota均为石灰土演替过程中POM和MAOM的优势菌门。总磷是影响石灰土演替过...  相似文献   

9.
The relative cleanability of stainless steel, enamelled steel, mineral resin and polycarbonate domestic sink materials was assessed by comparing the number of organisms remaining on surfaces after cleaning. In unused condition all materials, other than one enamelled steel, were equally cleanable. Stainless steel, abraded artificially or impact damaged to a similar degree as stainless steel subjected to domestic wear, retained approximately one log order less bacteria after cleaning than the other materials subjected to the same treatments. Little difference in cleanability was recorded between the abraded surfaces of the other materials although enamelled steel surfaces were less cleanable than mineral resin or polycarbonate after impact damage, because of the greater susceptibility of enamelled steel to damage by this treatment. When cleaning time was extended beyond 10 s for the abraded and impact damaged materials, their cleanability was not enhanced as compared with stainless steel. Changes in surface finish after abrasion were assessed by surface roughness measurement and scanning electron microscopy. Surfaces with poor cleanability before and after abrasion were characterized by pitting, crevices or jags. These surfaces are likely to retain more bacteria because of increased numbers of attachment sites, a larger bacterial/material surface contact area and topographical areas in which applied cleaning shear forces are reduced. Materials that resist surface changes, e.g. stainless steel, will remain more hygienic when subjected to natural wear than materials which become more readily damaged.  相似文献   

10.
In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re‐colonize the initially sterile surface. Five years post‐eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (< 0.2%C). When normalized by OM levels, post‐eruptive surfaces with OM inputs had the highest β‐glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant‐ and bird‐associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance.  相似文献   

11.
Climatic change, such as increases in extreme drought and rainfall events and changes in rainfall intensity and pattern, has been strongly influencing soil moisture. The climatic change impact is particularly common in arid, semi-arid and Mediterranean regions, which is causing dramatic changes in the intensity and frequency of soil drying–rewetting cycles. The soil drying–rewetting cycle is a natural phenomenon that the soil experiences drying, then wetting, and then drying and rewetting again and again. When a dry soil is being rewetted, the amount of soil microbial biomass and its activity can be sharply increasing in a short time period, and then a large amount of gaseous carbon (C) and nitrogen (N) erupts from the soil. The sudden release of gaseous C and N is caused by the stimulation of the soil microbes. Such a phenomenon is called “Birch effect”. The drying–rewetting cycles have direct and indirect effects on soil microbes, and soil microbial responses to the drying and rewetting events play an important role in the feedbacks of terrestrial ecosystems. From aspects of soil microbial biomass, microbial activities and microbial structure, we review recent advances on studies regarding microbial responses to soil drying–rewetting cycles. We interpret the microbial responses using five different types of mechanisms: (1) Microbial stress mechanism: when a soil becomes dry, microorganisms must accumulate compatible solutes such as carbohydrates and aminoacids so that the soil microbes can equilibrate with their environment in order to avoid dehydrating and being killed. When the soil is rewetted, soil microbes must dispose of those osmolytes rapidly by transforming them into carbon dioxide (CO2), dissolved organic carbon (DOC) and nutrients in order to prevent water from being flowing into the cells. (2) Substrate supply mechanism: low soil moisture may result in the physical disruption of soil aggregates which leads to the exposure of new soil surfaces and of previously protected organic matter. When the soil is rewetted, its physical structure is further disrupted by swelling. The increased new soil surfaces and previously protected organic matter will improve the microorganism’s nutrient availability. (3) Soil hydrophobicity mechanism: soil hydrophobicity can cause the reduction of soil moisture and nutrient availability and inhibition of microbial decomposition of soil organic matter. Therefore, soil hydrophobicity is an important factor of explaining the activity of microorganism in drying and rewetting events. (4) Diffusive limitations mechanism: transportation of the soil microbe is limited in a dry soil. When soil moisture is increasing, soil microbial activity is enhanced along with the increased availability of substrate nutrients. (5) Predation mechanism: a moist soil is usually conducive to the increase of bacteria and fungi populations. In response, protozoa and nematodes also increase, leading to the fluctuation of the soil microbial community structure. On the basis of the literature review, we propose five important aspects to be considered in the future: (1) assessing soil microbes’ concrete adapting ways to the drying–rewetting cycles, (2) evaluating the microbial responses to the drying–rewetting cycles based on suitable indicators, (3) interpreting microbial responses to the drying–rewetting cycles by combining field investigation and laboratory controlling experiment, (4) investigating the microbial responses to the drying–rewetting cycles at different temporal and spatial scales.  相似文献   

12.
The resolving ability of polyvinyl siloxane impression material at a submicron scale was tested in order to determine its ability to reproduce the topographical features of worn contact surfaces such as those found in the food processing industry. Three impression materials were tested against three surfaces with standardized surface features. Cryo scanning electron microscopy and atomic force microscopy were used to provide high magnification images of the surfaces and impressions of the surfaces. Dimensional information was also provided by surface profilometry techniques using a solid stylus and a laser profilometer. Although the three impression materials accurately reproduced the line spacing of the largest scale test specimen, the least viscous material gave the most satisfactory surface reproduction, although a degree of vertical relief was lost. This material has been used to monitor wear of food contact surfaces in situ. Such information enables further research into the effect of increased or altered substratum surface roughness upon microbial and organic soil retention.  相似文献   

13.
Mercury (Hg) is a persistent soil pollutant that affects soil microbial activity. We monitored the changes in soil microbial biomass and activity of enzymes, including alkaline phosphatase, arylsulfatase, fluorescein diacetate (FDA) hydrolytic activity, and o-diphenol oxidase (o-DPO) in three soils contaminated with different concentrations of Hg. Increasing levels of Hg, from 0.5 to 10 μmol/g of dried soil, generally depressed microbial activity; however, the effects of Hg on soil microbial activity depended on soil type and composition, particularly organic matter content. o-DPO was less affected by Hg than the other three enzymes tested. Our results indicate that the analysis of microbial biomass content and soil-enzyme activities may be used to predict the soil quality contaminated with Hg.  相似文献   

14.
Soil mono- and disaccharides (SS) and total free amino acids (AA) can influence soil microbial activities, whether they are derived from decomposition of organic materials or from plant root exudates. To quantify the relative importance of aboveground plant litter input and belowground inputs of root exudates and root debris on SS and AA, we conducted litter removal, root trenching and tree girdling experiments in a subtropical moist forest of southwest China. We found that concentrations of SS and AA had pronounced seasonal fluctuations. Litter removal markedly reduced SS concentrations, but it had no effect on AA concentrations. Concentrations of SS were significantly correlated with litterfall that had occurred 2 months earlier in the control plots, but that correlation was not observed in the litter removal plots. Multiple-linear regressions of soil respiration and soil temperature on AA concentrations were significant in both control and litter removal plots, but not in the root trenching or tree girdling plots. These results suggest that SS levels are likely to be regulated by aboveground plant litter input, and concentrations of AA are affected by microbial activity that fluctuates with soil temperature and belowground carbon input.  相似文献   

15.
Reindeer grazing in the Fennoscandian area has a considerable influence on the ground vegetation, and this is likely in turn to have important consequences for the soil biota and decomposition processes. The effects of reindeer grazing on soil biota, decomposition and mineralization processes, and ecosystem properties in a lichen‐dominated forest in Finnish Lapland were studied inside and outside a large long term fenced reindeer exclosure area. Decomposition rates of Vaccinium myrtillus leaves in litter bags were retarded in the grazed area relative to the ungrazed area, as well as in subplots from which lichens had been artificially removed to simulate grazing. The effect of reindeer grazing on soil respiration and microbial C was positive in the lichen and litter layers of the soil profile, but retarded in the humus layer. There was no effect of grazing on gross N mineralization and microbial biomass N in the humus and upper mineral soil layer, but net N mineralization was increased by grazing. In these layers soil respiration was reduced by grazing, indicating that reindeer effects reduce the ratio of C to N mineralized by soil microorganisms. Grazing stimulated populations of all trophic groupings of nematodes in the lichen layer and microbe feeding nematodes in the litter layer, indicating that grazing by reindeer has multitrophic effects on the decomposer food‐web. Grazing decreased lichen and dwarf shrub biomasses and increased the mass of litter present in the litter layer on an areal basis, but did not significantly alter total C storage per unit area in the humus and mineral soil layers. The N concentration of lichens was increased by grazing, but the N concentrations of both living and dead Pinus sylvestris needles and Empetrum hermaphroditum leaves were not affected.
There was some evidence for each of three mechanisms which could account for the grazing effects that we observed in our study. Firstly, reindeer may have changed the composition and quality of litter input by affecting plant species composition and through addition of N from urine and faeces, resulting in a lack of available C relative to N for decomposer organisms. Secondly, the organic matter in the soil may be older in the grazed area, because of reduction of recent production of lichen litter relative to the ungrazed area. The organic matter in the grazed area may have been in a different phase of decomposition from that in the exclosure. Thirdly, the soil microclimate is likely to be affected by reindeer grazing through physical removal of lichen cover on the ground, and this can have a significant influence on soil microbial processes. This is supported by the strong observed effects of experimental removal of lichens on decomposer processes. The impact of reindeer grazing on soil processes may be a result of complex interactions between different mechanisms, and this could help to explain why the below‐ground effects of reindeer grazing have different consequences to those which have been observed in recent investigations on other grazing systems.  相似文献   

16.
凋落物对土壤有机碳与微生物功能多样性的影响   总被引:2,自引:0,他引:2  
森林凋落物是影响土壤微生物群落和有机碳含量的重要因素,但其作用的程度和机制尚不清楚,研究该问题对于分析森林生态系统碳循环和资源管理具有重要意义。研究凋落物去除与添加处理下土壤有机碳含量与土壤微生物对碳源利用的差异,明确凋落物去除与添加对土壤微生物群落代谢功能及其多样性的影响,探究不同处理下SOC含量变化的土壤微生物群落代谢机理。选取承德市雾灵山1405-1435 m海拔范围内核桃楸-蒙古栎混交林的表层土壤,采用室内培养结合Biolog-ECO方法,测定了培养第21天的土壤有机碳(soil organic carbon,SOC)含量及微生物群落的AWCD值、Shannon-Wiener多样性指数、Simpson优势度指数、McIntosh均匀度指数、Pielou丰富度指数,分析培养期内凋落物的不同处理下SOC含量与微生物功能多样性的变化特征。结果表明:1)不同凋落物处理对SOC含量与土壤微生物群落多样性具有显著影响(P<0.05),DL > HL > NL > CK;2)不同凋落物处理下土壤微生物群落代谢活性和土壤微生物对碳源的利用程度具有显著差异(P<0.05),碳水化合物类和氨基酸类是土壤微生物的主要碳源;3)不同处理的SOC含量与土壤微生物多样性具有正相关关系。双倍凋落物添加在短期内对土壤微生物多样性影响难以达到显著水平且在一定程度上对土壤微生物的代谢活性具有抑制作用,土壤微生物群落功能多样性对SOC含量具有重要影响。  相似文献   

17.
Organic matter decomposition and soil CO2 efflux are both mediated by soil microorganisms, but the potential effects of temporal variations in microbial community composition are not considered in most analytical models of these two important processes. However, inconsistent relationships between rates of heterotrophic soil respiration and abiotic factors, including temperature and moisture, suggest that microbial community composition may be an important regulator of soil organic matter (SOM) decomposition and CO2 efflux. We performed a short-term (12-h) laboratory incubation experiment using tropical rain forest soil amended with either water (as a control) or dissolved organic matter (DOM) leached from native plant litter, and analyzed the effects of the treatments on soil respiration and microbial community composition. The latter was determined by constructing clone libraries of small-subunit ribosomal RNA genes (SSU rRNA) extracted from the soil at the end of the incubation experiment. In contrast to the subtle effects of adding water alone, additions of DOM caused a rapid and large increase in soil CO2 flux. DOM-stimulated CO2 fluxes also coincided with profound shifts in the abundance of certain members of the soil microbial community. Our results suggest that natural DOM inputs may drive high rates of soil respiration by stimulating an opportunistic subset of the soil bacterial community, particularly members of the Gammaproteobacteria and Firmicutes groups. Our experiment indicates that variations in microbial community composition may influence SOM decomposition and soil respiration rates, and emphasizes the need for in situ studies of how natural variations in microbial community composition regulate soil biogeochemical processes.  相似文献   

18.
To predict the behavior of the terrestrial carbon cycle, it is critical to understand the source, formation pathway, and chemical composition of soil organic matter (SOM). There is emerging consensus that slow‐cycling SOM generally consists of relatively low molecular weight organic carbon substrates that enter the mineral soil as dissolved organic matter and associate with mineral surfaces (referred to as “mineral‐associated OM,” or MAOM). However, much debate and contradictory evidence persist around: (a) whether the organic C substrates within the MAOM pool primarily originate from aboveground vs. belowground plant sources and (b) whether C substrates directly sorb to mineral surfaces or undergo microbial transformation prior to their incorporation into MAOM. Here, we attempt to reconcile disparate views on the formation of MAOM by proposing a spatially explicit set of processes that link plant C source with MAOM formation pathway. Specifically, because belowground vs. aboveground sources of plant C enter spatially distinct regions of the mineral soil, we propose that fine‐scale differences in microbial abundance should determine the probability of substrate–microbe vs. substrate–mineral interaction. Thus, formation of MAOM in areas of high microbial density (e.g., the rhizosphere and other microbial hotspots) should primarily occur through an in vivo microbial turnover pathway and favor C substrates that are first biosynthesized with high microbial carbon‐use efficiency prior to incorporation in the MAOM pool. In contrast, in areas of low microbial density (e.g., certain regions of the bulk soil), MAOM formation should primarily occur through the direct sorption of intact or partially oxidized plant compounds to uncolonized mineral surfaces, minimizing the importance of carbon‐use efficiency, and favoring C substrates with strong “sorptive affinity.” Through this framework, we thus describe how the primacy of biotic vs. abiotic controls on MAOM dynamics is not mutually exclusive, but rather spatially dictated. Such an understanding may be integral to more accurately modeling soil organic matter dynamics across different spatial scales.  相似文献   

19.
Despite the major importance of soil biota in nutrient and energy fluxes, interactions in soil food webs are poorly understood. Here we provide an overview of recent advances in uncovering the trophic structure of soil food webs using natural variations in stable isotope ratios. We discuss approaches of application, normalization and interpretation of stable isotope ratios along with methodological pitfalls. Analysis of published data from temperate forest ecosystems is used to outline emerging concepts and perspectives in soil food web research. In contrast to aboveground and aquatic food webs, trophic fractionation at the basal level of detrital food webs is large for carbon and small for nitrogen stable isotopes. Virtually all soil animals are enriched in 13C as compared to plant litter. This ‘detrital shift’ likely reflects preferential uptake of 13C‐enriched microbial biomass and underlines the importance of microorganisms, in contrast to dead plant material, as a major food resource for the soil animal community. Soil organic matter is enriched in 15N and 13C relative to leaf litter. Decomposers inhabiting mineral soil layers therefore might be enriched in 15N resulting in overlap in isotope ratios between soil‐dwelling detritivores and litter‐dwelling predators. By contrast, 13C content varies little between detritivores in upper litter and in mineral soil, suggesting that they rely on similar basal resources, i.e. little decomposed organic matter. Comparing vertical isotope gradients in animals and in basal resources can be a valuable tool to assess trophic interactions and dynamics of organic matter in soil. As indicated by stable isotope composition, direct feeding on living plant material as well as on mycorrhizal fungi is likely rare among soil invertebrates. Plant carbon is taken up predominantly by saprotrophic microorganisms and channelled to higher trophic levels of the soil food web. However, feeding on photoautotrophic microorganisms and non‐vascular plants may play an important role in fuelling soil food webs. The trophic niche of most high‐rank animal taxa spans at least two trophic levels, implying the use of a wide range of resources. Therefore, to identify trophic species and links in food webs, low‐rank taxonomic identification is required. Despite overlap in feeding strategies, stable isotope composition of the high‐rank taxonomic groups reflects differences in trophic level and in the use of basal resources. Different taxonomic groups of predators and decomposers are likely linked to different pools of organic matter in soil, suggesting different functional roles and indicating that trophic niches in soil animal communities are phylogenetically structured. During last two decades studies using stable isotope analysis have elucidated the trophic structure of soil communities, clarified basal food resources of the soil food web and revealed links between above‐ and belowground ecosystem compartments. Extending the use of stable isotope analysis to a wider range of soil‐dwelling organisms, including microfauna, and a larger array of ecosystems provides the perspective of a comprehensive understanding of the structure and functioning of soil food webs.  相似文献   

20.
On the surfaces of monuments and buildings, organic and inorganic pollutants accumulate, as well as various microbial communities which contribute to stone decay. In order to control these organisms, we have tested some chemical products with biocide and water-repellent properties. Some of these products were tested in an agar diffusion test and on limestone slabs. Efficacy of the products and the microbial inhibition were studied with scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM) techniques. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号