首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been suggested that bacteria associated with soft-bodied organisms are suggested to produce bioactive compounds against the attachment of invertebrate larvae and bacteria onto the surface of these organisms. Our recent study has demonstrated that epibiotic bacteria from the surface of the soft coral Dendronephthya sp. (Coelenterata: Octocoralia, Alcyonacea) inhibit the growth of bacteria commonly found in marine natural biofilms. In the present study, the effect of 11 epibiotic bacteria isolated from the surface of Dendronephthya sp. on larval settlement of the tubeworms Hydroides elegans was examined using laboratory bioassay. Among 11 bacterial isolates, 2 strains (18%) inhibited the larval settlement of H. elegans (Haswell), 4 strains (36%) were “inductive” to larvae and the remaining 5 strains (46%) were “non-inductive”. There was no correlation between the antifouling activities of bacterial isolates and their phylogenetic origin, i.e. closely related bacterial strains showed different effects on larval settlement of H. elegans. When all “inductive”, “non-inductive” and “inhibitive” bacterial isolates were mixed in a 1:1:1 ratio, the effect of the resultant multispecies film on larval settlement became “inhibitive”. Waterborne compounds of Vibrio sp. and an unidentified α-Proteobacterium, which suppressed the settlement of H. elegans and Bugula neritina (L.) larvae, were further investigated using size fractionation and bioassay-guided enzymatic analysis. It was found that antilarval settlement compounds from these bacteria were heat-stable polysaccharides with a molecular weight >100 kDa. The results indicate that the bacteria associated with the soft coral Dendronephthya sp. may contribute to the antifouling mechanisms of the soft-bodied organisms by producing compounds that are against bacterial growth and settlement of macrofoulers on the surface of their host.  相似文献   

2.
Previous studies have shown that the rate of settlement of zoospores of the green alga Enteromorpha is stimulated by mixed microbial biofilms and that the number of zoospores settling is positively correlated with the number of bacteria in the biofilm. In the present study the specificity of this relationship has been investigated. Ninety-nine strains of marine bacteria were isolated from natural biofilms on rocks and the surface of Enteromorpha plants. Isolates were screened by denaturing gradient gel electrophoresis (DGGE) to eliminate replicates and 16S rDNA sequencing identified a total of 37 unique strains. Phylogenetic analysis revealed that the isolated bacterial strains belonged to three groups gamma-Proteobacteria (28 strains), Cytophaga-Flavobacteria-Bacteroid (CFB) group (six strains) and alpha-Proteobacteria (one strain). Two strains were unassigned, showing < 93% sequence similarity with the CFB group. The main genera of gamma-Proteobacteria were Pseudoalteromonas (14 strains), Vibrio (five strains), Shewanella (five strains), Halomonas (three strains) and Pseudomonas (one strain). Spore settlement experiments were conducted on single-species biofilms, developed for different times on glass slides. The effect of correcting spore settlement values for biofilm density was evaluated. Results showed that the effect of bacterial strains on spore settlement was strain- but not taxon-specific and activity varied with the age of the biofilm. However, most of the strains belonging to genera Vibrio and Shewanella showed stimulation. Pseudoalteromonas strains showed a range of effects including settlement-inhibiting, paralysing and lysing activities. Spatial analysis of bacterial density in the presence and absence of spores revealed a range of different types of association between spores and bacteria. Overall, the spatial association between spores and bacteria appears to be independent of the overall quantitative influence of bacterial cells on spore settlement.  相似文献   

3.
A total of 319 bacterial strains isolated from the surfaces of seaweeds and invertebrates were tested for their effects on settlement of Ulvalactuca spores and Hydroidesezoensis larvae in laboratory bioassays. Of the 192 bacterial strains isolated from the surfaces of seaweeds 63 isolates were shown to be inhibitory against the settlement of algal spores and 62 isolates were inhibitory against larval settlement. Thirty-seven percent of the 127 bacterial strains isolated from the surfaces of marine invertebrates were shown to be inhibitory against algal spores and larval settlement. The strain CI4 isolated from an adult Cionaintestinalis showed the strongest inhibitory effect and was identified as Pseudoalteromonas sp. via 16S rRNA gene sequencing. The high proportions of host associated bacteria producing antifouling compounds suggest that these bacteria may help the host organism in the defense against fouling.  相似文献   

4.
Ma Y X  Liu P L  Yu S B  Li D T  Cao S M 《农业工程》2009,29(4):222-226
A total of 319 bacterial strains isolated from the surfaces of seaweeds and invertebrates were tested for their effects on settlement of Ulvalactuca spores and Hydroidesezoensis larvae in laboratory bioassays. Of the 192 bacterial strains isolated from the surfaces of seaweeds 63 isolates were shown to be inhibitory against the settlement of algal spores and 62 isolates were inhibitory against larval settlement. Thirty-seven percent of the 127 bacterial strains isolated from the surfaces of marine invertebrates were shown to be inhibitory against algal spores and larval settlement. The strain CI4 isolated from an adult Cionaintestinalis showed the strongest inhibitory effect and was identified as Pseudoalteromonas sp. via 16S rRNA gene sequencing. The high proportions of host associated bacteria producing antifouling compounds suggest that these bacteria may help the host organism in the defense against fouling.  相似文献   

5.
The aims of this study were to determine if marine bacteria from Danish coastal waters produce antifouling compounds and if antifouling bacteria could be ascribed to specific niches or seasons. We further assess if antibacterial effect is a good proxy for antifouling activity. We isolated 110 bacteria with anti-Vibrio activity from different sample types and locations during a 1-year sampling from Danish coastal waters. The strains were identified as Pseudoalteromonas, Phaeobacter, and Vibrionaceae based on phenotypic tests and partial 16S rRNA gene sequence similarity. The numbers of bioactive bacteria were significantly higher in warmer than in colder months. While some species were isolated at all sampling locations, others were niche specific. We repeatedly isolated Phaeobacter gallaeciensis at surfaces from one site and Pseudoalteromonas tunicata at two others. Twenty-two strains, representing the major taxonomic groups, different seasons, and isolation strategies, were tested for antiadhesive effect against the marine biofilm-forming bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis. The antiadhesive effects were assessed by quantifying the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from attaching to steel surfaces. P. piscicida killed S91 bacteria in the suspension cultures, whereas P. tunicata and P. ulvae did not; however, they did prevent adhesion by nonbactericidal mechanism(s). Seven Pseudoalteromonas species, including P. piscicida and P. tunicata, reduced the number of settling Ulva zoospores to less than 10% of the number settling on control surfaces. The antifouling alpP gene was detected only in P. tunicata strains (with purple and yellow pigmentation), so other compounds/mechanisms must be present in the other Pseudoalteromonas strains with antifouling activity.  相似文献   

6.
Yang LH  Lee OO  Jin T  Li XC  Qian PY 《Biofouling》2006,22(1-2):23-32
Many soft-bodied sessile marine invertebrates such as sponges and soft corals defend themselves against fouling directly through the production of antifouling compounds, or indirectly through regulating the epibiotic microbes that affect larval settlement. In this study, 10beta-formamidokalihinol-A and kalihinol A were isolated and purified from the marine sponge Acanthella cavernosa (Dendy). The results indicated that both compounds inhibited the growth of bacteria isolated from the natural environment whereas kalihinol A suppressed larval settlement of a major fouling polychaete, Hydroides elegans with an EC50 of 0.5 microg ml(-1). Kalihinol A was incorporated in Phytagel that was exposed to the bacterial consortia in natural seawater for biofilm formation. Biofilms that developed on the Phytagel surfaces were analysed for bacterial abundance and bacterial species composition using a DNA fingerprinting technique, terminal restriction fragment length polymorphism (T-RFLP). The results showed that kalihinol A only slightly reduced bacterial abundance (t-test, p = 0.0497), but modified the bacterial species composition of the biofilms. Inhibition of H. elegans larval settlement was observed when biofilms developed under the influence of kalihinol A were exposed to larvae, suggesting that compounds like kalihinol A from the sponge A. cavernosa may change bacterial community composition on the sponge surface, which in turn, modulates larval settlement of fouling organisms.  相似文献   

7.
Bacterial biofilms are increasingly seen as important for the successful settlement of marine invertebrate larvae. Here we tested the effects of biofilms on settlement of the sea urchin Heliocidaris erythrogramma. Larvae settled on many surfaces including various algal species, rocks, sand and shells. Settlement was reduced by autoclaving rocks and algae, and by treatment of algae with antibiotics. These results, and molecular and culture-based analyses, suggested that the bacterial community on plants was important for settlement. To test this, approximately 250 strains of bacteria were isolated from coralline algae, and larvae were exposed to single-strain biofilms. Many induced rates of settlement comparable to coralline algae. The genus Pseudoalteromonas dominated these highly inductive strains, with representatives from Vibrio, Shewanella, Photobacterium and Pseudomonas also responsible for a high settlement response. The settlement response to different bacteria was species specific, as low inducers were also dominated by species in the genera Pseudoalteromonas and Vibrio. We also, for the first time, assessed settlement of larvae in response to characterised, monospecific biofilms in the field. Larvae metamorphosed in higher numbers on an inducing biofilm, Pseudoalteromonas luteoviolacea, than on either a low-inducing biofilm, Pseudoalteromonas rubra, or an unfilmed control. We conclude that the bacterial community on the surface of coralline algae is important as a settlement cue for H. erythrogramma larvae. This study is also an example of the emerging integration of molecular microbiology and more traditional marine eukaryote ecology.  相似文献   

8.
The induction of larval attachment and metamorphosis of benthic marine invertebrates is widely considered to rely on habitat specific cues. While microbial biofilms on marine hard substrates have received considerable attention as specific signals for a wide and phylogenetically diverse array of marine invertebrates, the presumed chemical settlement signals produced by the bacteria have to date not been characterized. Here we isolated and fully characterized the first chemical signal from bacteria that induced larval metamorphosis of acroporid coral larvae (Acropora millepora). The metamorphic cue was identified as tetrabromopyrrole (TBP) in four bacterial Pseudoalteromonas strains among a culture library of 225 isolates obtained from the crustose coralline algae Neogoniolithon fosliei and Hydrolithon onkodes. Coral planulae transformed into fully developed polyps within 6 h, but only a small proportion of these polyps attached to the substratum. The biofilm cell density of the four bacterial strains had no influence on the ratio of attached vs. non-attached polyps. Larval bioassays with ethanolic extracts of the bacterial isolates, as well as synthetic TBP resulted in consistent responses of coral planulae to various doses of TBP. The lowest bacterial density of one of the Pseudoalteromonas strains which induced metamorphosis was 7,000 cells mm(-2) in laboratory assays, which is on the order of 0.1-1% of the total numbers of bacteria typically found on such surfaces. These results, in which an actual cue from bacteria has been characterized for the first time, contribute significantly towards understanding the complex process of acroporid coral larval settlement mediated through epibiotic microbial biofilms on crustose coralline algae.  相似文献   

9.
The symbiotic role of marine microbes on living surfaces   总被引:14,自引:2,他引:12  
Every surface immersed in the sea rapidly becomes covered with a biofilm. On inanimate surfaces, this is often followed by colonisation by larger organisms, and general macrofouling. On the other hand, the majority of marine organisms remain relatively free from macrofouling, although some may be covered in a thin film of epibiotic bacteria. The role of these bacteria in maintaining the health of the host has received little attention. Here we describe an ecological role for epibiotic bacteria from seaweed surfaces. These epibionts may play a protective role, releasing compounds into the surrounding seawater that help prevent extensive fouling of the surface. These compounds may also have industrial and medical applications. The relative ease of culturing these microbes, compared to other bacteria that produce active compounds suggests seaweed-associated bacteria may be useful in bioprocess applications, such as the production of antimicrobial or antifouling compounds.  相似文献   

10.
Three challenge experiments were carried out on larvae of the great scallop Pecten maximus. Larvae were bath-challenged with Vibrio pectenicida and 5 strains resembling Vibrio splendidus and one Pseudoalteromonas sp. Unchallenged larvae were used as negative controls. The challenge protocol was based on the use of a multidish system, where the scallop larvae (10, 13 and 15 d post-hatching in the 3 experiments, respectively) were distributed to 2 ml wells with stagnant seawater and exposed to the bacterial cultures by bath challenge. Presence of the challenge bacteria in the wells was verified by polymerase chain reaction (PCR). A significantly increased mortality was found between 24 and 48 h in most groups challenged with V. pectenicida or V. splendidus-like strains. The exception was found in larval groups challenged with a Pseudoalteromonas sp. LT 13, in which the mortality rate fell in 2 of the 3 challenge experiments. Larvae from the challenge experiments were studied by immunohistochemistry protocol. Examinations of larval groups challenged with V. pectenicida revealed no bacterial cells, despite a high degree of positive immunostaining. In contrast, intact bacterial cells were found in larvae challenged with V. splendidus. In the case of larvae challenged with the Pseudoalteromonas sp., positive immuno-staining was limited to visible bacteria inside the digestive area and cells of the mucosa. The experiments confirm that V. splendidus and V. pectenicida are pathogenic to scallop larvae, and that the Pseudoalteromonas strain is probably not a primary pathogen, although it cannot be ruled out as a secondary pathogen.  相似文献   

11.
It is widely accepted that bacterial epiphytes can inhibit the colonization of surfaces by common fouling organisms. However, little information is available regarding the diversity and properties of these antifouling bacteria. This study assessed the antifouling traits of five epiphytes of the common green alga, Ulva lactuca . All isolates were capable of preventing the settlement of invertebrate larvae and germination of algal spores. Three of the isolates also inhibited the growth of a variety of bacteria and fungi. Their phylogenetic positions were determined by 16S ribosomal subunit DNA sequencing. All isolates showed a close affiliation with the genus Pseudoalteromonas and, in particular, with the species P. tunicata . Strains of this bacterial species also display a variety of antifouling activities, suggesting that antifouling ability may be an important trait for members of this genus to be highly successful colonizers of animate surfaces and for such species to protect their host against fouling.  相似文献   

12.
Taxonomy of four marine bacterial strains that produce tetrodotoxin   总被引:19,自引:0,他引:19  
Four strains of tetrodotoxin-producing bacteria isolated from a red alga and from pufferfish were characterized. Two of these strains are members of the genus Listonella MacDonell and Colwell. The phenotypic characteristics, guanine-plus-cytosine contents, and base sequences of the 16S rRNAs of these organisms indicated that they are members of Listonella pelagia (Vibrio pelagius) biovar II. The other two strains are members of the genus Alteromonas Baumann et al. and the genus Shewanella MacDonell and Colwell. These two strains are mutually distinct and distinct from the previously described Alteromonas and Shewanella species and therefore are placed in new species. The names Shewanella alga and Alteromonas tetraodonis are proposed for these organisms; the type strains are strains OK-1 and GFC, respectively.  相似文献   

13.
14.
The purpose of this study was to select, identify and characterise bacteria as a disease control measure in the rearing of marine fish larvae (turbot, Scophthalmus maximus). Thirty-four out of 400 marine bacterial strains exhibited in vitro anti-bacterial activity against three fish larval pathogens. Two strains originated from culture collections and thirty two strains were isolated directly from turbot larvae rearing units using a pre-selection procedure to facilitate detection of antagonists. Approximately 8,500 colonies from colony-count plates were replica-plated on agar seeded with Vibrio anguillarum, and 196 of them caused zones of clearing in the V. anguillarum agar layer. Of these, 32 strains exhibited reproducible antibacterial properties in vitro when tested against the fish pathogens V. anguillarum 90-11-287, V. splendidus DMC-1 and a Pseudoalteromonas HQ. Seventeen antagonists were identified as Vibrio spp. and four of twelve tested were lethal to yolk-sac larvae. The 15 remaining strains were identified as Roseobacter spp. based on phenotypic criteria and 16S rDNA gene sequence analysis of two strains representing the two major RAPD groups. Most of the remaining 164 strains selected in the initial replica plating were identified as Vibrionaceae or Pseudoalteromonas. Roseobacter spp. were not lethal to egg yolk sac turbot larvae and in two of three trials, the mortality of larvae decreased (p > 0.001) in treatments where 10(7) cfu/ml Roseobacter sp. strain 27-4 was added, indicating a probiotic potential.  相似文献   

15.
Members of the marine bacterial genus Pseudoalteromonas have been found in association with living surfaces and are suggested to produce bioactive compounds against settlement of algal spores, invertebrate larvae, bacteria and fungi. To determine the extent by which these antifouling activities and the production of bioactive compounds are distributed amongst the members of the genus Pseudoalteromonas, 10 different Pseudoalteromonas species mostly derived from different host organisms were tested in a broad range of biofouling bioassays. These assays included the settlement of larvae of two ubiquitous invertebrates Hydroides elegans and Balanus amphitrite as well as the settlement of spores of the common fouling algae Ulva lactuca and Polysiphonia sp. The growth of bacteria and fungi, which are the initial fouling organisms on marine surfaces, was also assayed in the presence of each of the 10 Pseudoalteromonas species. It was found that most members of this genus produced a variety of bioactive compounds. The broadest range of inhibitory activities was expressed by Pseudoalteromonas tunicata which inhibited all target fouling organisms. Only two species, Pseudoalteromonas haloplanktis and Pseudoalteromonas nigrifaciens, displayed negligible activity in the bioassays. These were also the only two non-pigmented species tested in this study which indicates a correlation between production of bioactive compounds and expression of pigment. Three members, P. tunicata, Pseudoalteromonas citrea and Pseudoalteromonas rubra, were demonstrated to express autoinhibitory activity. It is suggested that most Pseudoalteromonas species are efficient producers of antifouling agents and that the production of inhibitory compounds by surface associated Pseudoalteromonas species may aid the host against colonisation of its surface.  相似文献   

16.
Dissolved chemical inducers of settlement behavior of veliger larvae of the oysterCrassostrea gigas are found in supernatants of both pigmented species of bacteria (Alteromonas colwelliana, Vibrio cholerae strain HTX) as well as nonpigmented bacteria (Excherichia coli, Vibrio cholerae strain 596-B). Usually less than 10% of veligers exhibited settlement behavior in response to supernatants from the early bacterial growth phases, whereas 30–90% of larvae responded when exposed to supernatant from late-log and stationary phase cultures. Percentages of larvae exhibiting settlement behavior were inversely correlated with oxygen levels in the culture. Furthermore, the behavioral response decreased with pigment formation, suggesting that quantities of noxious compounds such as quinones may build up in the supernatants of cultures of pigmented bacteria. Tyrosinase, an enzyme that converts L-tyrosine to L-DOPA in the first step of melanogenesis, was detected both in the bacterial pellet and the supernatant during growth of the pigmented species. The enzyme is not required for the production of settlement inducer as the nonpigmented speciesE. coli andV. cholerae (596-B) also released inducer into the supernatant and had no detectable tyrosinase. The data suggest either that there is more than one inducer of settlement behavior found in bacterial supernatants or that the inducer is not L-DOPA or an L-DOPA-mimetic associated with the melanin biochemical pathway.  相似文献   

17.
AIMS: To develop a method to screen antifouling agents against marine bacterial adhesion as a sensitive, rapid and quantitative microplate fluorescent test. METHODS AND RESULTS: Our experimental method is based on a natural biofilm formed by mono-incubation of the marine bacterium Pseudoalteromonas sp. D41 in sterile natural sea water in a 96-well polystyrene microplate. The 4'6-diamidino-2-phenylindole dye was used to quantify adhered bacteria in each well. The total measured fluorescence in the wells was correlated with the amount of bacteria showing a detection limit of one bacterium per 5 microm(2) and quantifying 2 x 10(7) to 2 x 10(8) bacteria adhered per cm(2). The antifouling properties of three commercial surface-active agents and chlorine were tested by this method in the prevention of adhesion and also in the detachment of already adhered bacteria. The marine bacterial adhesion inhibition rate depending on the agent concentration showed a sigmoid shaped dose-response curve. CONCLUSIONS: This test is well adapted for a rapid and quantitative first screening of antifouling agents directly in seawater in the early steps of marine biofilm formation. Significance AND IMPACT OF THE STUDY: In contrast to the usual screenings of antifouling products which detect a bactericidal activity, this test is more appropriate to screen antifouling agents for bacterial adhesion removal or bacterial adhesion inhibition activities. This screening test focuses on the antifouling properties of the products, especially the initial steps of marine biofilm formation.  相似文献   

18.
Aims:  Several Gram-negative bacterial species use N -acyl homoserine lactone (AHL) molecules as quorum-sensing (QS) signals to regulate various biological functions. Similarly, various bacteria can stimulate, inhibit or inactivate QS signals in other bacteria by producing molecules called as quorum-sensing inhibitors (QSI). Our aim was to screen and identify the epibiotic bacteria associated with brown algae for their ability of producing QS-inhibiting activity.
Methods and Results:  QSI screenings were conducted on several epibiotic bacteria isolated from a marine brown alga Colpomenia sinuosa , using Serratia rubidaea JCM 14263 as an indicator organism. Strain JCM 14263 controls the production of red pigment, prodigiosin by AHL QS. Out of 96 bacteria, which were isolated from the surface of the brown alga, 12% of strains showed the ability to produce QSI, which was observed from the pigmentation inhibition on Ser. rubidaea JCM 14263 without affecting its growth. Phylogenetic analysis using 16S rRNA gene sequencing method demonstrated bacterial isolates showing QS inhibition-producing bacteria belonging to the Bacillaceae (Firmicutes), Pseudomonadaceae (Proteobacteria), Pseudoalteromonadaceae (Proteobacteria) and Vibrionaceae (Proteobacteria).
Conclusion:  An appreciable percentage of bacteria isolated from the brown alga produced QSI-like compounds.
Significance and Impact of the Study:  The screening method using Ser. rubidaea described in this report will facilitate the rapid identification of QSI-producing bacteria from marine environment. This study reveals new avenue for future environmental applications. This study also suggests that these algal epibiotic bacteria may play a role in the defensive mechanism for their host by producing QSI or QSI-like compounds to suppress the settlement of other competitive bacteria.  相似文献   

19.
EF Goulden  MR Hall  LL Pereg  L Høj 《PloS one》2012,7(7):e39667
Vibrio owensii DY05 is a serious pathogen causing epizootics in the larviculture of ornate spiny lobster Panulirus ornatus. In the present study a multi-tiered probiotic screening strategy was used to identify a probiotic combination capable of protecting P. ornatus larvae (phyllosomas) from experimental V. owensii DY05 infection. From a pool of more than 500 marine bacterial isolates, 91 showed definitive in vitro antagonistic activity towards the pathogen. Antagonistic candidates were shortlisted based on phylogeny, strength of antagonistic activity, and isolate origin. Miniaturized assays used a green fluorescent protein labelled transconjugant of V. owensii DY05 to assess pathogen growth and biofilm formation in the presence of shortlisted candidates. This approach enabled rapid processing and selection of candidates to be tested in a phyllosoma infection model. When used in combination, strains Vibrio sp. PP05 and Pseudoalteromonas sp. PP107 significantly and reproducibly protected P. ornatus phyllosomas during vectored challenge with V. owensii DY05, with survival not differing significantly from unchallenged controls. The present study has shown the value of multispecies probiotic treatment and demonstrated that natural microbial communities associated with wild phyllosomas and zooplankton prey support antagonistic bacteria capable of in vivo suppression of a pathogen causing epizootics in phyllosoma culture systems.  相似文献   

20.
A modified roller bottle culture method elicited the production of antimicrobial compounds from 2 epibiotic marine bacterial strains, EI-34-6 and II-111-5, isolated from the surface of the marine alga Palmaria palmata. These isolates, tentatively identified as Bacillus species, were grown as a biofilm on the surface of nutrient glycerol ferric agar (NGFA) and marine Columbia glycerol agar (MCGA) on the inside of a rolling bottle. The biofilm was shown to be stable, and the cells were difficult to remove from the agar surface. The culture supernatant exhibited a different antibiotic spectrum when the strains were grown using the agar roller bottle method compared with shake flask cultures or nonagar roller bottle cultures. These results suggest that biofilm formation is an important factor in the production of antimicrobial compounds by these 2 strains, and roller bottle cultivation also allowed production of these compounds to be increased. The methodology used here has the potential to allow increased production of useful secondary metabolites such as antibiotics from marine epibiotic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号