首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scardino AJ  Harvey E  De Nys R 《Biofouling》2006,22(1-2):55-60
This paper explores diatom attachment to a range of laser etched polyimide surfaces to directly test 'attachment point theory'. Static bioassays were conducted on microtextured polyimide surfaces using four diatom species, Fallacia carpentariae, Nitzschia cf. paleacea, Amphora sp. and Navicula jeffreyi with cell sizes ranging from 1-14 microm. The microtextured polyimides were modelled from natural fouling resistant bivalve surfaces and had wavelengths above, below and at the same scale as the diatom cell sizes. Diatoms attached in significantly higher numbers to treatments where the numbers of attachment points was highest. The lowest diatom attachment occurred where cells were slightly larger than the microtexture wavelength, resulting in only two theoretical points of attachment. The results support attachment point theory and highlight the need to address larval/cell size in relation to the number of attachment points on a surface. Further studies examining a range of microtexture scales are needed to apply attachment point theory to a suite of fouling organisms and to develop structured surfaces to control the attachment and development of fouling communities.  相似文献   

2.
This paper examines attachment point theory in detail by testing the fouling attachment of several fouling groups to a microtextured matrix. Static bioassays were conducted on polycarbonate plates with nine equal regions, comprising eight scales of microtexture (4-512 microm) and one untextured region. The microtextures examined were continuous sinusoidal ridges and troughs of defined height and width. Attachment over the microtextured plates was examined for the diatom Amphora sp., the green alga Ulva rigida, the red alga Centroceras clavulatum, the serpulid tube worm Hydroides elegans and the bryozoan Bugula neritina. It was found that the size of the microtexture in relation to the size of the settling propagules/larvae was important in the selection of attachment sites. Attachment was generally lower when the microtexture wavelength was slightly smaller than the width of the settling propagules/larvae and increased when the wavelength was wider than their width. The effect of attachment points was weak for small motile microfoulers (Amphora sp. and U. rigida) (7 microm), strong for large macrofouling larvae (H. elegans and B. neritina) (129-321 microm) and non-existent for the non-motile algal spores (C. clavulatum) (37 microm). This study reinforces the potential of using attachment points to develop surfaces with increased fouling resistance or, alternatively, surfaces which promote the attachment of selected target sizes of motile propagules or larvae.  相似文献   

3.
The antifouling efficacy of a series of 18 textured (0.2–1000 μm) and non-textured (0 μm) polydimethylsiloxane surfaces with the profiles of round- and square-wave linear grating was tested by recording the settlement of fouling organisms in the laboratory and in the field by monitoring the recruitment of a multi-species fouling community. In laboratory assays, the diatoms Nitzschia closterium and Amphora sp. were deterred by all surface topographies regardless of texture type. Settlement of propagules of Ulva sp. was lower on texture sizes less than the propagule size, and settlement of larvae of Saccostrea glomerata and Bugula neritina was lower on texture sizes closest to, but less than, the sizes of larvae. After a six month field trial, all textured surfaces lost their deterrent effect; however, the foul-release capabilities of textures were still present. High initial attachment was correlated with most fouling remaining after removal trials, indicating that fouling organisms recruited in higher numbers to surfaces upon which they attached most strongly.  相似文献   

4.
Surface topography plays a key role in the colonization of substrata by the colonizing stages of marine fouling organisms. For the innovation of marine antifouling coatings, it is essential to understand how topographic cues affect the settlement of these organisms. In this study, tapered, spiked microstructures and discrete honeycombs of varying feature dimensions were designed and fabricated in order to examine the influence of topography on the attachment of zoospores of the green macroalga Ulva linza and cells of the diatom (microalga) Navicula incerta. Contrasting results were obtained with these two species of algae. Indeed, the preferred location of cells of N. incerta was dominated by attachment point theory, which suggested a positive correlation between the density of cells adhering and the amount of available attachment points, while the settlement of spores of U. linza was mainly regulated by both Wenzel roughness and local binding geometry.  相似文献   

5.
Testing of fouling release (FR) technologies is of great relevance for discovery of the next generation of protective marine coatings. In this paper, an accumulation assay to test diatom interaction under laminar flow with the model organism Navicula perminuta is introduced. Using time lapse microscopy with large area sampling allows determination of the accumulation kinetics of the diatom on three model surfaces with different surface properties at different wall shear stresses. The hydrodynamic conditions within the flow cell are described and a suitable shear stress range to perform accumulation experiments is identified at which statistically significant discrimination of surfaces is possible. The observed trends compare well to published adhesion preferences of N. perminuta. Also, previously determined trends of critical wall shear stresses required for cell removal from the same set of functionalized interfaces shows consistent trends. Initial attachment mediated by extracellular polymeric substances (EPS) present outside the diatoms leads to the conclusion that the FR potential of the tested coating candidates can be deducted from dynamic accumulation experiments under well-defined hydrodynamic conditions. As well as testing new coating candidates for their FR properties, monitoring of the adhesion process under flow provides additional information on the mechanism and geometry of attachment and the population kinetics.  相似文献   

6.
Microtopography has been demonstrated as an effective deterrent to biofouling. The majority of published studies are fixed-time assays that raise questions regarding the kinetics of the attachment process. This study investigated the time-dependent attachment density of zoospores of Ulva, in a laboratory assay, on a micropatterned and smooth silicone elastomer. The attachment density of zoospores was reduced on average 70–80% by the microtopography relative to smooth surfaces over a 4 h exposure. Mapping the zoospore locations on the topography revealed that they settled preferentially in specific, recessed areas of the pattern. The kinetic data fit, with high correlation (r 2 > 0.9), models commonly used to describe the adhesion of bacteria to surfaces. The grouping of spores on the microtopography indicated that the pattern inhibited the ability of attached spores to recruit neighbors. This study demonstrates that the antifouling mechanism of topographies may involve disruption of the cooperative effects exhibited by fouling organisms such as Ulva.  相似文献   

7.
Jarosław Kobak 《Biofouling》2013,29(3):141-150
Abstract

The effects of several factors (shell length, exposure time, substratum orientation in space, illumination, temperature, conspecifics) upon the attachment strength (measured with a digital dynamometer) of the freshwater, gregarious bivalve Dreissena polymorpha were studied under laboratory conditions. A rapid increase in attachment strength was observed on resocart (a thermosetting polymer based on phenol-formaldehyde resin, with paper as filler) substrata during the first 4-d exposure, after which it stabilised at ca 1 N. The attachment strength increased also with mussel size. Mussel adhesion on variously oriented surfaces (vertical, upper horizontal and lower horizontal) was similar. Illumination inhibited attachment strength, as expected for a photophobic species, but only after a 2-d exposure. After 6 d, no effects of light were detected. Thus, illumination seemed to influence the attachment rate, rather than the final strength. The optimum temperature for mussel attachment was 20 – 25°C. At lower and higher temperatures (5 – 15°C and 30°C), their adhesion strength decreased. The presence of conspecifics stimulated mussel attachment strength.  相似文献   

8.
Previous work has shown that organosilica-based xerogels have the potential to control biofouling. In this study, modifications of chemistry were investigated with respect to their resistance to marine slimes and to settlement of barnacle cyprids. Adhesion force measurements of bovine serum albumin (BSA)-coated atomic force microscopy (AFM) tips to xerogel surfaces prepared from aminopropylsilyl-, fluorocarbonsilyl-, and hydrocarbonsilyl-containing precursors, indicated that adhesion was significantly less on the xerogel surfaces in comparison to a poly(dimethylsiloxane) elastomer (PDMSE) standard. The strength of adhesion of BSA on the xerogels was highest on surfaces with the highest and the lowest critical surface tensions, γC and surface energies, γS, and duplicated the ‘Baier curve’. The attachment to and removal of cells of the diatom Navicula perminuta from a similar series of xerogel surfaces were examined. Initial attachment of cells was comparable on all of the xerogel surfaces, but the percentage removal of attached cells by hydrodynamic shear stress increased with γC and increased wettability as measured by the static water contact angle, θWs, of the xerogel surfaces. The percentage removal of cells of Navicula was linearly correlated with both properties (R 2 = 0.74 for percentage removal as a function of θWs and R 2 = 0.69 for percentage removal as a function of γC). Several of the aminopropylsilyl-containing xerogels showed significantly greater removal of Navicula compared to a PDMSE standard. Cypris larvae of the barnacle B. amphitrite showed preferred settlement on hydrophilic/higher energy surfaces. Settlement was linearly correlated with θWs (R 2 = 0.84) and γC (R 2 = 0.84). Hydrophilic xerogels should prove useful as coatings for boats in regions where fouling is dominated by microfouling (protein and diatom slimes).  相似文献   

9.
A predictive model for the attachment of spores of the green alga Ulva on patterned topographical surfaces was developed using a constant refinement approach. This ‘attachment model’ incorporated two historical data sets and a modified version of the previously-described Engineered Roughness Index. Two sets of newly-designed surfaces were used to evaluate the effect of two components of the model on spore settlement. Spores attached in fewer numbers when the area fraction of feature tops increased or when the number of distinct features in the design increased, as predicted by the model. The model correctly predicted the spore attachment density on three previously-untested surfaces relative to a smooth surface. The two historical data sets and two new data sets showed high correlation (R 2 = 0.88) with the model. This model may be useful for designing new antifouling topographies.  相似文献   

10.
Surface wettability and microtopography can either enhance or deter larval settlement of many sessile marine organisms. This study quantifies the effect of these surface properties on the settlement of pediveligers of Mytilus galloprovincialis, using polymers spanning a range of wettability and microtextured polydimethylsiloxane (PDMS). Furthermore, the adhesion strength of settled pediveligers on microtextured PDMS surfaces was quantified using a flow chamber. Settlement was enhanced at the hydrophilic end of the wettability spectrum, where mean settlement on nylon reached 33.5 ± 13.1%. In contrast, mean settlement on the most hydrophobic polymer (PDMS) was 4.2 ± 3.2%. Microtopography had a much stronger effect compared to wettability, where 400 μm textured PDMS enhanced settlement above 90%. Settlement preferences were also positively correlated to adhesion strength at flow rates of 4 knots, with all initially settled pediveligers on smooth PDMS detaching, while 79.9 ± 5.7% of pediveligers remained on the 400 μm texture.  相似文献   

11.

The physical nature of fouling deterrence by the mussel Mytilus galloprovincialis was investigated using high-resolution biomimics of the bivalve surface. The homogeneous microtextured surface of M. galloprovincialis (1.94 ± 0.03 μm), the smooth surface of the bivalve Amusium balloti (0 μm), and moulds of these surfaces (biomimics) were compared with controls of smooth (0 μm) and sanded moulds, (55.4 ± 2.7 μm) and PVC strips (0 μm) in a 12-week field trial. The shell and mould of M. galloprovincialis were fouled by significantly fewer species and had significantly less total fouling cover than the shell and mould of A. balloti over a 12-week period. However, the major effects were between surfaces with and without microtopography. Surface microtopography, be it structured as in the case of M. galloprovincialis shell and mould, or random as in the case of the sanded mould, had a lower cover of fouling organisms than treatments without microtopography after 6 weeks. There was also no difference between the effect of the M. galloprovincialis mould and the sanded mould. The strong fouling deterrent effects of both these surfaces diminished rapidly after 6 to 8 weeks while that of M. galloprovincialis shell remained intact for the duration of the experiment suggesting factors in addition to surface microtopography contribute to fouling deterrence.  相似文献   

12.
This work reports on a simple, robust and scientifically sound method to develop surfaces able to reduce microbial attachment and biofilm development, with possible applications in medicine, dentistry, food processing, or water treatment. Anodic surfaces with cylindrical nanopores 15 to 100 nm in diameter were manufactured and incubated with Escherichia coli ATCC 25922 and Listeria innocua. Surfaces with 15 and 25 nm pore diameters significantly repressed attachment and biofilm formation. Surface–bacteria interaction forces calculated using the extended Derjaguin Landau Verwey-Overbeek (XDLVO) theory indicate that reduction in attachment and biofilm formation is due to a synergy between electrostatic repulsion and surface effective free energy. An attachment study using E. coli K12 strains unable to express appendages also suggests that the small-pore surfaces may inhibit flagella-dependent attachment. These results can have immediate, far-reaching implications and commercial applications, with substantial benefits for human health and life.  相似文献   

13.
Optical fibres have received considerable attention as high-density sensor arrays suitable for both in vitro and in vivo measurements of biomolecules and biological processes in living organisms and/or nano-environments. The fibre surface was chemically modified by exposure to a selective etchant that preferentially erodes the fibre cores relative to the surrounding cladding material, thus producing a regular pattern of cylindrical wells of approximately 2.5 μm in diameter and 2.5 μm deep. The surface hydrophobicity of the etched and non-etched optical fibres was analysed using the sessile pico-drop method. The surface topography was characterised by atomic force microscopy (AFM), while the surface chemistry was probed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Six taxonomically different bacterial strains showed a consistent preference for attachment to the nano-scale smoother (R q = 273 nm), non-etched fibre surfaces (water contact angle, θ = 106° ± 4°). In comparison, the surfaces of the etched optical fibres (water contact angle, θ = 96° ± 10°) were not found to be amenable to bacterial attachment. Bacterial attachment on the non-etched optical fibre substrata varied among different strains.  相似文献   

14.

This study has investigated the relationship between bacterial biofilms and the attachment of zoospores of the green macroalga Enteromorpha. Zoospore attachment to glass slides was enhanced in the presence of a bacterial biofilm assemblage, and the number attaching increased with the number of bacteria present. Zoospores also attached to control surfaces, but at lower numbers; glass surfaces conditioned in autoclaved seawater had the same number of zoospores attached as new glass surfaces. The spatial relationship between bacterial cells and attached zoospores was quantified by image analysis. The hypothesis tested was that zoospores attached preferentially to, or in the very close vicinity of, bacterial cells. Spatial microscopic analysis showed that more bacteria were covered by zoospores than would be expected if zoospore attachment was a random process and zoospores appeared to attach to bacterial clusters. The most likely explanation is that zoospores are attracted to bacterial cells growing on surfaces and the presence of a bacterial biofilm enhances their settlement. The possibility is discussed that Enteromorpha zoospores respond to a chemical signal produced by bacteria, i.e. that there may be prokaryote‐eukaryote cell signalling.  相似文献   

15.
Abstract

The effect of 2, 4-dinitrophenol (DNP) on the extracelluar polysaccharides (EPS), cell surface charge, and the hydrophobicity of six marine bacterial cultures was studied, and its influence on attachment of these bacteria to glass and polystyrene was evaluated. DNP treatment did not influence cell surface charge and EPS production, but had a significant effect on hydrophobicity of both hydrophilic (p = 0.05) and hydrophobic (p = 0.01) cultures. Significant reduction in the attachment of all the six cultures to glass (p = 0.02) and polystyrene (p = 0.03) was observed after DNP treatment. Moreover, hydrophobicity but not the cell surface charge or EPS production influenced bacterial cell attachment to glass and polystyrene. From this study, it was evident that DNP treatment influenced bacterial cell surface hydrophobicity, which in turn, reduced bacterial adhesion to surfaces.  相似文献   

16.
Abstract

Although cyanobacteria are a common group of microorganisms well-suited to utilization in photobioreactors (PBRs), studies of cyanobacteria fouling and its prevention are scarce. Using a cyanobacterium, Anabaena sp. PCC 7120, which had been genetically modified to enhance linalool production, the formation of conditioning films and the effects of these on the physico-chemical surface properties of various PBR materials during initial adhesion and biofilm formation were investigated. The adhesion assay revealed that the overall attachment of Anabaena was substratum dependent and no correlation between the hydrophobicity/roughness of clean material and cell attachment was found. Surface hydrophilicity/hydrophobicity of all the materials changed within 12?h due to formation of conditioning films. ATR-FTIR spectroscopy revealed that the fractional change in protein deposition between 12 to 96?h was consistent with Anabaena cell attachment but polysaccharide deposition was material specific and did not correlate with cell attachment on the PBR materials. Also, the delay in conditioning film proteins on PVC and PTFE indicated that components other than proteins may be responsible for the decrease in contact angles on these surfaces within 12?h. This indicates the important role of the chemical nature of adsorbed conditioning films in determining the initial attachment of Anabaena to PBR materials. The lower rate of attachment of Anabaena on the hydrophilic surfaces (glass and PMMA) between 72?h to 96?h (regime 3) showed that these surfaces could potentially have low fouling characteristics at extended time scales and should be considered for further research.  相似文献   

17.
Whole cell, strength of adhesion assays of three different isolates of the fouling diatom Amphora coffeaeformis were compared using a hydrophilic surface viz. acid washed glass (AWG), and a hydrophobic surface viz. a self assembled monolayer (SAM) of undecanethiol (UDT). Assays were performed using a newly designed turbulent flow channel that permits direct observation and recording of cell populations on a test surface. Exposure to continuous shear stress over 3 h revealed that the more motile isolate, WIL2, adhered much more strongly to both test surfaces compared to the other two strains. When the response of the isolates to shear stress after 3 h was compared, there was no significant difference in the percentage of cells removed, irrespective of surface wettability. Cells of the three isolates of A. coffeaeformis varied significantly in their response to different surfaces during initial adhesion, indicating the presence of a wide range of ‘physiological races’ within this species.  相似文献   

18.
Aim: To investigate the effect of curli expression on cell hydrophobicity, biofilm formation and attachment to cut and intact fresh produce surfaces. Methods and Results: Five Escherichia coli O157:H7 strains were evaluated for curli expression, hydrophobicity, biofilm formation and attachment to intact and cut fresh produce (cabbage, iceberg lettuce and Romaine lettuce) leaves. Biofilm formation was stronger when E. coli O157:H7 were grown in diluted tryptic soy broth (1 : 10). In general, strong curli‐expressing E. coli O157:H7 strains 4406 and 4407 were more hydrophobic and attached to cabbage and iceberg lettuce surfaces at significantly higher numbers than other weak curli‐expressing strains. Overall, E. coli O157:H7 populations attached to cabbage and lettuce (iceberg and Romaine) surfaces were similar (P > 0·05), indicating produce surfaces did not affect (P < 0·05) bacterial attachment. All E. coli O157:H7 strains attached rapidly on intact and cut produce surfaces. Escherichia coli O157:H7 attached preferentially to cut surfaces of all produce types; however, the difference between E. coli O157:H7 populations attached to intact and cut surfaces was not significant (P > 0·05) in most cases. Escherichia coli O157:H7 attachment and attachment strength (SR) to intact and cut produce surfaces increased with time. Conclusions: Curli‐producing E. coli O157:H7 strains attach at higher numbers to produce surfaces. Increased attachment of E. coli O157:H7 on cut surfaces emphasizes the need for an effective produce wash to kill E. coli O157:H7 on produce. Significance and Impact of the Study: Understanding the attachment mechanisms of E. coli O157:H7 to produce surfaces will aid in developing new intervention strategies to prevent produce outbreaks.  相似文献   

19.
Diatoms are a major component of microbial biofouling layers that develop on man-made surfaces placed in aquatic environments, resulting in significant economic and environmental impacts. This paper describes surface functionalisation of the inherently conducting polymers (ICPs) polypyrrole (PPy) and polyaniline (PANI) with poly(ethylene glycol) (PEG) and their efficacy as fouling resistant materials. Their ability to resist interactions with the model protein bovine serum albumin (BSA) was tested using a quartz crystal microbalance with dissipation monitoring (QCM-D). The capacity of the ICP-PEG materials to prevent settlement and colonisation of the fouling diatom Amphora coffeaeformis (Cleve) was also assayed. Variations were demonstrated in the dopants used during ICP polymerisation, along with the PEG molecular weight, and the ICP-PEG reaction conditions, all playing a role in guiding the eventual fouling resistant properties of the materials. Optimised ICP-PEG materials resulted in a significant reduction in BSA adsorption, and > 98% reduction in diatom adhesion.  相似文献   

20.
Abstract

Bioadhesion and surface wettability are influenced by microscale topography. In the present study, engineered pillars, ridges and biomimetic topography inspired by the skin of fast moving sharks (Sharklet AF?) were replicated in polydimethylsiloxane elastomer. Sessile drop contact angle changes on the surfaces correlated well (R2 = 0.89) with Wenzel and Cassie and Baxter's relationships for wettability. Two separate biological responses, i.e. settlement of Ulva linza zoospores and alignment of porcine cardiovascular endothelial cells, were inversely proportional to the width (between 5 and 20 μm) of the engineered channels. Zoospore settlement was reduced by ~85% on the finer (ca 2 μm) and more complex Sharklet AF? topographies. The response of both cell types suggests their responses are governed by the same underlying thermodynamic principles as wettability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号